यदि $f(x) = \frac{{\alpha x}}{{x + 1}},x \ne - 1$, $f(f(x)) = x$, $\alpha $ का मान क्या है
$\sqrt 2 $
$ - \sqrt 2 $
$1$
$-1$
फलन $f(x) = {(x + 1)^2}$, $x \ge - 1$ यदि $g(x)$ एक ऐसा फलन है, जिसका ग्राफ, सरल रेखा $y = x$ के सापेक्ष, $f(x)$ के ग्राफ का परावर्तन है, तब $g(x)$=
सिद्ध किजिए कि $f(1)=f(2)=1$ तथा $x>2$ के लिए $f(x)=x-1$ द्वारा प्रदत्त फलन $f: N \rightarrow N ,$ आच्छादक तो है किंतु एकैकी नहीं है।
सभी वास्तविक $x \neq 3$ के लिए फलन $f(x)=\frac{16 x^2-96 x+153}{x-3}$ को परिभाषित करें । $f(x)$ का सबसे छोटा धनात्मक मान है ?
यादि $f(x) = \cos (\log x)$, तब $f(x)f(y) - \frac{1}{2}[f(x/y) + f(xy)] = $
माना $f(x)=2 x^2-x-1$ तथा $S=\{n \in Z :|f(n)| \leq 800\} \quad$ हैं। तब $\sum \limits_{n \in S} f(n)$ का मान है $............$