एक फलन $\mathrm{f}: \mathbb{N} \rightarrow \mathbb{R}$, के लिए $\mathrm{f}(1)+2 \mathrm{f}(2)+3 \mathrm{f}(3)+\ldots+\mathrm{xf}(\mathrm{x})=\mathrm{x}(\mathrm{x}+1) \mathrm{f}(\mathrm{x}) ;$ $\mathrm{x} \geq 2$ तथा $\mathrm{f}(1)=1$ है तो $\frac{1}{\mathrm{f}(2022)}+\frac{1}{\mathrm{f}(2028)}$ बराबर है

  • [JEE MAIN 2023]
  • A

    $8200$

  • B

    $8000$

  • C

    $8400$

  • D

    $8100$

Similar Questions

तत्समक फलन $I _{N }: N \rightarrow N$ पर विचार कीजिए, जो $I _{ N }(x)=x, \forall x \in N$ द्वारा परिभाषित है। सिद्ध कीजिए कि, यद्यपि $I _{ N }$ आच्छादक है किंतु निम्नलिखित प्रकार से परिभाषित फलन $I _{ N }+ I _{ N }: N \rightarrow N$ आच्छादक नहीं है

$\left( I _{ N }+ I _{ N }\right)(x)= I _{ N }(x)+ I _{ N }(x)=x+x=2 x$

माना $\mathrm{A}=\{1,2,3,4,5\}$ तथा $\mathrm{B}=\{1,2,3,4,5,6\}$ हैं। तो $f(1)+f(2)=f(4)-1$ को संतुष्ट करने वाले फलनों $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ की संख्या है

  • [JEE MAIN 2023]

$f(x)=4 \sin ^{-1}\left(\frac{x^2}{x^2+1}\right)$ का परिसर है

  • [JEE MAIN 2023]

यदि $f(x) = \frac{{{x^2} - 1}}{{{x^2} + 1}}$ प्रत्येक वास्तविक संख्याओं के लिए, तब $f$ का न्यूनतम मान

माना $f: N \rightarrow N$ एक फलन है, जिसके लिए $f( m + n )=f( m )+f( n ) \forall m , n \in N$ है। यदि $f(6)=18$ है, तो $f(2) \cdot f(3)$ बराबर है

  • [JEE MAIN 2021]