एक फलन $\mathrm{f}: \mathbb{N} \rightarrow \mathbb{R}$, के लिए $\mathrm{f}(1)+2 \mathrm{f}(2)+3 \mathrm{f}(3)+\ldots+\mathrm{xf}(\mathrm{x})=\mathrm{x}(\mathrm{x}+1) \mathrm{f}(\mathrm{x}) ;$ $\mathrm{x} \geq 2$ तथा $\mathrm{f}(1)=1$ है तो $\frac{1}{\mathrm{f}(2022)}+\frac{1}{\mathrm{f}(2028)}$ बराबर है
$8200$
$8000$
$8400$
$8100$
माना $f : R \rightarrow R , f ( x )=\frac{ x }{1+ x ^{2}}, x \in R$ द्वारा परिभाषित किया गया है, तो $f$ का परिसर है
सिद्ध कीजिए कि $f(x)=2 x$ द्वारा प्रदत्त फलन $f: R \rightarrow R$, एकैकी तथा आच्छादक है।
माना $S =\{1,2,3,4,5,6,7\}$ है। तो ऐसे फलनों $f: S \rightarrow S$ जिनके लिए $f( m \cdot n )=f( m ) \cdot f( n ) \forall m , n \in S$ तथा $m \cdot n \in S$ है, की संख्या बराबर है ........ |
माना $f(x)$ एक द्विघाती बहुपद है जिसका मुख्य-गुणांक 1 है तथा $f (0)= p , p \neq 0$ और $f (1)=\frac{1}{3}$ हैं। यदि समीकरणों $f ( x )=0$ तथा $fofofof (x)=0$ का एक उभयनिष्ठ वास्तविक मूल है, तो $f(-3)$ बराबर है
माना $\mathrm{S}=\{1,2,3,4,5,6\}$ है तो ऐसे ऐकेकी फलनों $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{P}(\mathrm{S})$, जहाँ $\mathrm{P}(\mathrm{S})$ समुच्चय $\mathrm{S}$ का घात समुच्चय $\mathrm{f}(\mathrm{n}) \subset \mathrm{f}(\mathrm{m})$ है जब भी $\mathrm{n}<\mathrm{m}$ है, की संख्या है_______.