यदि $f:R \to R$; $f(x + y) = f(x) + f(y)$, को संतुष्ट करता है; सभी $x,\;y \in R$ के लिए तथा $f(1) = 7$, तब $\sum\limits_{r = 1}^n {f(r)} $ का मान है
$\frac{{7n}}{2}$
$\frac{{7(n + 1)}}{2}$
$7n(n + 1)$
$\frac{{7n(n + 1)}}{2}$
माना $[ x ]$ महत्तम पूर्णांक $\leq x$ है, जहों $x \in R$ है। यदि वास्तविक मान फलन $f(x)=\sqrt{\frac{[x] \mid-2}{[x] \mid-3}}$ का प्रांत $(-\infty, a) \cup[b, c) \cup[4, \infty), a < b < c$, है, तो $a+b+c$ का मान है
फलन $f(x) = {\sin ^2}({x^4}) + {\cos ^2}({x^4})$ का परिसर है
यदि $f(x) = \frac{x}{{x - 1}} = \frac{1}{y}$, तो $f(y) = $
माना फलन $f : R \rightarrow R$ इस प्रकार है कि $f ( x )= x ^{3}+ x ^{2} f ^{\prime}(1)+ xf ^{\prime \prime}(2)+ f ^{\prime \prime \prime}(3), x \in R$ तो $f(2)$ बराबर है
माना $a, b, c \in R$ यदि $f(x)=a x^{2}+b x+c$ ऐसा है कि $a+b+c=3$ है तथा सभी $x, y \in R$ के लिए
$f(x+y)=f(x)+f(y)+x y$ है, तो $\sum_{n=1}^{10} f(n)$ बराबर है: