If $P\,({A_1} \cup {A_2}) = 1 - P(A_1^c)\,P(A_2^c)$ where $c$ stands for complement, then the events ${A_1}$ and ${A_2}$ are

  • A

    Mutually exclusive

  • B

    Independent

  • C

    Equally likely

  • D

    None of these

Similar Questions

For three events $A,B $ and $C$  ,$P ($ Exactly one of $A$ or $B$ occurs$)\, =\, P ($ Exactly one of $C$ or $A$ occurs $) =$ $\frac{1}{4}$ and $P ($ All the three events occur simultaneously $) =$ $\frac{1}{16}$ Then the probability that at least one of the events occurs is :

  • [JEE MAIN 2017]

If $A$ and $B$ are two events, then the probability of the event that at most one of $A, B$ occurs, is

  • [IIT 2002]

A card is drawn from a pack of $52$ cards. A gambler bets that it is a spade or an ace. What are the odds against his winning this bet

If $P\,(A) = \frac{1}{4},\,\,P\,(B) = \frac{5}{8}$ and $P\,(A \cup B) = \frac{3}{4},$ then $P\,(A \cap B) = $

Two dice are thrown independently. Let $A$ be the event that the number appeared on the $1^{\text {st }}$ die is less than the number appeared on the $2^{\text {nd }}$ die, $B$ be the event that the number appeared on the $1^{\text {st }}$ die is even and that on the second die is odd, and $C$ be the event that the number appeared on the $1^{\text {st }}$ die is odd and that on the $2^{\text {nd }}$ is even. Then

  • [JEE MAIN 2023]