If $P\,({A_1} \cup {A_2}) = 1 - P(A_1^c)\,P(A_2^c)$ where $c$ stands for complement, then the events ${A_1}$ and ${A_2}$ are
Mutually exclusive
Independent
Equally likely
None of these
Two events $A$ and $B$ will be independent, if
Let $E$ and $F$ be two independent events. The probability that both $E$ and $F$ happens is $\frac{1}{{12}}$ and the probability that neither $E$ nor $F$ happens is $\frac{1}{2},$ then
Fill in the blanks in following table :
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$0.35$ | ........... | $0.25$ | $0.6$ |
Let $X$ and $Y$ are two events such that $P(X \cup Y=P)\,(X \cap Y).$
Statement $1:$ $P(X \cap Y' = P)\,(X' \cap Y = 0).$
Statement $2:$ $P(X) + P(Y = 2)\,P\,(X \cap Y)$
An unbiased coin is tossed. If the outcome is a head then a pair of unbiased dice is rolled and the sum of the numbers obtained on the is noted. If the toss of the coin results in tail then a card from a well-shuffled pack of nine cards numbered $1, 2, 3,….., 9$ is randomly picked and the number on the card is noted. The probability that the noted number is either $7$ or $8$ is