If $P(B) = \frac{3}{4}$, $P(A \cap B \cap \bar C) = \frac{1}{3}{\rm{ }}$ and $P(\bar A \cap B \cap \bar C) = \frac{1}{3},$ then $P(B \cap C)$ is
$\frac{1}{{12}}$
$\frac{1}{6}$
$\frac{1}{{15}}$
$\frac{1}{9}$
Let $A$ and $B$ are two events and $P(A') = 0.3$, $P(B) = 0.4,\,P(A \cap B') = 0.5$, then $P(A \cup B')$ is
Two dice are thrown. What is the probability that the sum of the numbers appearing on the two dice is $11$, if $5$ appears on the first
An electronic assembly consists of two subsystems, say, $A$ and $B$. From previous testing procedures, the following probabilities are assumed to be known :
$\mathrm{P}$ $( A$ fails $)=0.2$
$P(B$ fails alone $)=0.15$
$P(A$ and $ B $ fail $)=0.15$
Evaluate the following probabilities $\mathrm{P}(\mathrm{A}$ fails alone $)$
If $E$ and $F$ are independent events such that $0 < P(E) < 1$ and $0 < P\,(F) < 1,$ then
Probability of solving specific problem independently by $A$ and $B$ are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that the problem is solved.