यदि $P\,(A) = 0.4,\,\,P\,(B) = x,\,\,P\,(A \cup B) = 0.7$ और घटनाएँ $A$ तथा $B$ परस्पर अपवर्जी हों, तो $x = $
$\frac{3}{{10}}$
$\frac{1}{2}$
$\frac{2}{5}$
$\frac{1}{5}$
एक विशेष समस्या को $A$ और $B$ द्वारा स्वतंत्र रूप से हल करने की प्रायिकताएँ क्रमश : $\frac{1}{2}$ और $\frac{1}{3}$ हैं। यदि दोनों, स्वतंत्र रूप से, समस्या हल करने का प्रयास करते हैं, तो प्रायिकता ज्ञात कीजिए कि
समस्या हल हो जाती है।
$P(A \cup B) = P(A \cap B)$ यदि और केवल यदि $P(A)$ और $P(B)$ के बीच सम्बन्ध हैं
यदि $P(A) = 0.25,\,\,P(B) = 0.50$ तथा $P(A \cap B) = 0.14,$ तब $P(A \cap \bar B) =$
एक पात्र $A$ में $6$ लाल व $4$ काली गेंदें हैं तथा पात्र $B$ में $4$ लाल व $6$ काली गेंदें हैं। पात्र $A$ में से एक गेंद यदृच्छया निकाली जाती है और पात्र $B$ में रख दी जाती है। फिर एक गेंद पात्र $B$ में से निकालकर पात्र $A$ में रख दी जाती । यदि अब एक गेंद पात्र $A$ में से यदृच्छया निकाली जाए तो इसके लाल रंग की होने की प्रायिकता है
$A$ और $B$ स्वतंत्र घटनाएँ दी गई हैं जहाँ $P ( A )=0.3, P ( B )=0.6$ तो $P ( A$ और $B$ में कोई भी नहीं) का मान ज्ञात कीजिए।