माना दो घटनायें $A$ व $B$ इस प्रकार हैं कि $P\,(A) = 0.3$ एवं $P\,(A \cup B) = 0.8$ यदि $A$ व $B$ स्वतंत्र घटनायें हैं तो $P(B)$ का मान है
$\frac{5}{6}$
$\frac{5}{7}$
$\frac{3}{5}$
$\frac{2}{5}$
$A$ के सत्य बोलने की प्रायिकता $\frac{4}{5}$ है जबकि $B$ के सत्य बोलने की प्रायिकता $\frac{3}{4}$ है। किसी एक तथ्य पर दोनों में विरोधाभास हो, उसकी प्रायिकता है
$52$ ताश के पत्तों की गड्डी से एक पत्ता खींचा जाता है, इसके बेगम या पान का पत्ता होने की प्रायिकता है
यदि $A, B, C$ कोई तीन घटनायें हैं। यदि $P (S), S$ के घटाने की प्रायिकता है, तो $P\,(A \cap (B \cup C)) = $
निम्नलिखित सारणी में खाली स्थान भरिए:
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$0.35$ | ........... | $0.25$ | $0.6$ |
जाँच कीजिए कि निम्न प्रायिकताएँ $P ( A )$ और $P ( B )$ युक्ति संगत ( $consistently )$ परिभाषित की गई हैं
$P ( A )=0.5, P ( B )=0.4, P ( A \cup B )=0.8$