माना दो घटनायें $A$ व $B$ इस प्रकार हैं कि $P\,(A) = 0.3$ एवं $P\,(A \cup B) = 0.8$ यदि $A$ व $B$ स्वतंत्र घटनायें हैं तो $P(B)$ का मान है
$\frac{5}{6}$
$\frac{5}{7}$
$\frac{3}{5}$
$\frac{2}{5}$
तीन समुच्चयों (sets) $E _1=\{1,2,3\}, F _1=\{1,3,4\}$ और $G _1=\{2,3,4,5\}$ पर विचार कीजिए। समुच्चय $E _1$ से दो अवयवों (elements) को बिना प्रतिस्थापित किए (without replacement) यादृच्छया (randomly) चुना जाता है, और मान लीजिए कि $S _1$ इन चुने हए अवयवों के समुच्चय को निरूपित करता है। मान लोजिए कि $E _2= E _1- S _1$ तथा $F _2= F _1 \cup S _1$ हैं। अब समुच्चय $F _2$ से दो अवयवों को बिना प्रतिस्थापित किए यादृच्छया चुना जाता है, और मान लीजिए कि $S _2$ इन चुने हुए अवयवों के समुच्चय को निरूपित करता है। मान लीजिए कि $G _2= G _1 \cup S _2$ है। अंततः समुच्चय $G _2$ से दो अवयवों को बिना प्रतिस्थापित किए यादृच्छया चुना जाता है, और मान लीजिए कि $S _3$ इन चुने हुए अवयवों के समुच्चय को निरूपित करता है। मान लीजिए कि $E _3= E _2 \cup S _3$ है। घटना $E _1= E _3$ के ज्ञात होने पर, मान लीजिए कि $p$, घटना $S _1=\{1,2\}$ की सप्रतिबंध प्रायिकता (conditional probability) को निरूपित करता है। तब $p$ का मान है
एक थैले में $5$ सफेद व $4$ काली गेंदें हैं तथा दूसरे थैले में $7$ सफेद व $9$ काली गेंदे हैैं। एक गेंद पहले थैले में से दूसरे थैले में रख दी जाती है और तब दूसरे थैले में से एक गेंद निकाली जाती है तो उसके सफेद होने की प्रायिकता है
माना $A$ तथा $B$ दो घटनायें इस प्रकार हैं कि $P\overline {(A \cup B)} = \frac{1}{6},P(A \cap B) = \frac{1}{4}$ व $P(\bar A) = \frac{1}{4},$ जहाँ $\bar A$, घटना $A$ की पूरक है तब $A$ तथा $B$ हैं
$A$ और $B$ ऐसी घटनाएँ दी गई हैं जहाँ $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ तथा $P ( B )=p$
$\bar{p}$ का मान ज्ञात कीजिए यदि घटनाएँ परस्पर अपवर्जी हैं।
एक घटना के घटित होने की प्रायिकता दूसरी घटना के घटित होने की प्रायिकता का वर्ग है परन्तु पहली घटना के प्रतिकूल संयोगानुपात दूसरी के प्रतिकूल संयोगानुपात के घन हैं, तो घटनाओं की प्रायिकतायें हैं