एक थैले में $9$ डिस्क हैं जिनमें से $4$ लाल रंग की, $3$ नीले रंग की और $2$ पीले रंग की हैं। डिस्क आकार एवं माप में समरूप हैं। थैले में से एक डिस्क यादृच्छया निकाली जाती है। प्रायकिता ज्ञात कीजिए कि निकाली गई डिस्क लाल रंग की है या नीले रंग की है।
There are $9$ discs in all so the total number of possible outcomes is $9 .$
Let the events $A, \,B, \,C$ be defined as
$A:$ 'the disc drawn is red'
$B:$ 'the disc drawn is yellow'
$C:$ 'the disc drawn is blue'.
The event 'either red or blue' may be described by the set $'A$ or $C'$
since, $A$ and $C$ are mutually exclusive events, we have
$P ( A \text { or } C )= P ( A \cup C )$ $= P ( A )+ P ( C )=\frac{4}{9}+\frac{1}{3}=\frac{7}{9}$
मान लें $A$ और $B$ स्वतंत्र घटनाएँ हैं तथा $P ( A )=0.3$ और $P ( B )=0.4 .$ तब $P ( A \cap B )$ ज्ञात कीजिए।
मान लें $A$ तथा $B$ स्वतंत्र घटनाएँ हैं और $P ( A )=\frac{1}{2}$ तथा $P ( B )=\frac{7}{12}$ और $P ( A$ -नहीं और $B$ -नहीं $)=\frac{1}{4}$. क्या $A$ और $B$ स्वतंत्र घटनाएँ हैं?
किन्ही भी दो स्वतन्त्र घटनाओं ${E_1}$ व ${E_2},$ के लिए $P\,\{ ({E_1} \cup {E_2}) \cap ({\bar E_1} \cap {\bar E_2})\} $ है
$52$ ताश के पत्तों की गड्डी से एक पत्ता खींचा जाता है, इसके बेगम या पान का पत्ता होने की प्रायिकता है
घटनाएँ $E$ और $F$ इस प्रकार हैं कि $P ( E-$ नहीं और $F -$ नहीं $)=0.25,$ बताइए कि $E$ और $F$ परस्पर अपवर्जी हैं या नहीं ?