यदि $P(A) = 0.25,\,\,P(B) = 0.50$ तथा $P(A \cap B) = 0.14,$ तब $P(A \cap \bar B) =$
$0.61$
$0.39$
$0.48$
इनमें से कोई नहीं
यदि $A$ व $B$ कोई दो घटनाएँ हैं, तो $P(A \cup B) = $
तीन व्यक्ति $P, Q$ तथा $R$ स्वतंत्र रूप से एक निशाने को भेदने का प्रयास करते हैं। यदि उनके निशाने को भेद पाने की प्रायिकताएं क्रमशः $\frac{3}{4}, \frac{1}{2}$ तथा $\frac{5}{8}$ हैं, तो $P$ अथवा $Q$ के निशाना भेद पाने परन्तु $R$ के निशाना न भेद पाने की प्रायिकता है
किन्ही भी दो स्वतन्त्र घटनाओं ${E_1}$ व ${E_2},$ के लिए $P\,\{ ({E_1} \cup {E_2}) \cap ({\bar E_1} \cap {\bar E_2})\} $ है
एक शहर में $20\%$ लोग अंगे्रजी समाचार पत्र पढ़ते हैं, $40\%$ हिन्दी समाचार पत्र पढ़ते हैं एवं $5\%$ दोनों अखबार पढ़ते हैं, तो अखबार न पढ़ने वालों का प्रतिशत है
एक अभिनत सिक्का उछाला जाता है। यदि इस पर शीर्ष प्राप्त होता है तो एक पाँसे का युग्म उछाला जाता है तथा उन पर प्राप्त संख्याओं को जोड़कर नोट कर लिया जाता है। यदि पुच्छ आता है तो $11$ पत्तों की एक गड्डी $2, 3, 4,.......,12$ में से एक पत्ता खींचा जाता है एवं उस पर अंकित संख्या को नोट किया जाता है तो इस बात की प्रायिकता कि नोट की हुई संख्या $7$ या $8$ हो, है