एक प्रवेश परीक्षा को दो परीक्षणों (Tests) के आधार पर श्रेणीबद्ध किया जाता है। किसी यादृच्छया चुने गए विद्यार्थी की पहले परीक्षण में उत्तीर्ण होने की प्रायकिता $0.8$ है और दूसरे परीक्षण में उत्तीर्ण होने की प्रायिकता $0.7$ है। दोनों में से कम से कम एक परीक्षण उत्तीर्ण करने की प्रायिकता $0.95$ है। दोनों परीक्षणों को उत्तीर्ण करने की प्रायिकता क्या है ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $A$ and $B$ be the events of passing first and second examinations respectively.

Accordingly, $P(A)=0.8$, $P(B)=0.7$ and $P ( A$ or $B )=0.95$

We know that $P ( A$ or $B )= P ( A )+ P ( B )- P ( A$ and $B )$

$0.95=0.8+0.7- P ( A$ and $B )$

$P ( A$ and $B )=0.8+0.7-0.95=0.55$

Thus, the probability of passing both the examinations is $0.55$.

Similar Questions

माना $S =\{1,2,3, \ldots, 2022\}$ है। तब समुच्चय $S$ से यादृच्छया चुनी गई एक संख्या $n$ के लिए $HCF$ $( n , 2022)=1$ होने की प्रायिकता है:

  • [JEE MAIN 2022]

एक छात्रावास में $60 \%$ विद्यार्थी हींदी का, $40 \%$ अंग्रेज़ी का और $20 \%$ दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।

प्रायिकता ज्ञात कीजिए कि वह न तो हींदी और न ही अंग्रेज़ी का अखबार पढती है।

यदि $P(A) = \frac{1}{2},\,\,P(B) = \frac{1}{3}$ एवं $P(A \cap B) = \frac{7}{{12}},$ तो $P\,(A' \cap B')$ का मान है

एक पासे पर $1,2,3$ लाल रंग से और $4,5,6$ हरे रंग से लिखे गए हैं। इस पासे को उछाला गया। मान लें $A$ घटना 'संख्या सम है' और $B$ घटना 'संख्या लाल रंग से लिखी गई है', को निरूपित करते हैं। क्या $A$ और $B$ स्वतंत्र हैं?

मान लें $A$ तथा $B$ स्वतंत्र घटनाएँ हैं और $P ( A )=\frac{1}{2}$ तथा $P ( B )=\frac{7}{12}$ और $P ( A$ -नहीं और $B$ -नहीं $)=\frac{1}{4}$. क्या $A$ और $B$ स्वतंत्र घटनाएँ हैं?