एक प्रवेश परीक्षा को दो परीक्षणों (Tests) के आधार पर श्रेणीबद्ध किया जाता है। किसी यादृच्छया चुने गए विद्यार्थी की पहले परीक्षण में उत्तीर्ण होने की प्रायकिता $0.8$ है और दूसरे परीक्षण में उत्तीर्ण होने की प्रायिकता $0.7$ है। दोनों में से कम से कम एक परीक्षण उत्तीर्ण करने की प्रायिकता $0.95$ है। दोनों परीक्षणों को उत्तीर्ण करने की प्रायिकता क्या है ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $A$ and $B$ be the events of passing first and second examinations respectively.

Accordingly, $P(A)=0.8$, $P(B)=0.7$ and $P ( A$ or $B )=0.95$

We know that $P ( A$ or $B )= P ( A )+ P ( B )- P ( A$ and $B )$

$0.95=0.8+0.7- P ( A$ and $B )$

$P ( A$ and $B )=0.8+0.7-0.95=0.55$

Thus, the probability of passing both the examinations is $0.55$.

Similar Questions

एक ताश की गड्डी से एक पत्ता निकाला जाता है, उसके बेगम या पान का पत्ता होने की प्रायिकता है

एक पाठशाला की कक्षा $XI$ के $40 \%$ विद्यार्थी गणित पढते हैं और $30 \%$ जीव विज्ञान पढते हैं। कक्षा के $10 \%$ विद्यार्थी गणित और जीव विज्ञान दोनों पढते हैं। यदि कक्षा का एक विद्यार्थी यादृच्छया चुना जाता है , तो प्रायिकता ज्ञात कीजिए कि वह गणित या जीव विज्ञान पढ़ता होगा।

$A$ तथा $B$ दो ऐसी घटनाएँ हैं कि $P ( A \cup B )= P ( A \cap B )$ है, तो निम्न कथनों में से कौन सा कथन गलत है ?

  • [JEE MAIN 2014]

यदि $A , B , C$ किसी यादृच्च्छक प्रयोग के संगत तीन घटनाएँ हों तो सिद्ध कीजिए कि

$P ( A \cup B \cup C )= P ( A )+ P ( B )+ P ( C )- P ( A \cap B )- P ( A \cap C )$

$-P(B \cap C)+P(A \cap B \cap C)$

यदि $P(B) = \frac{3}{4}$, $P(A \cap B \cap \bar C) = \frac{1}{3}{\rm{ }}$ तथा $P(\bar A \cap B \cap \bar C) = \frac{1}{3},$ तब $P(B \cap C)$ का मान है

  • [IIT 2003]