यदि $P(A \cup B) = 0.8$ तथा $P(A \cap B) = 0.3,$ तब $P(\bar A) + P(\bar B) = $
$0.3$
$0.5$
$0.7$
$0.9$
एक अभिनत सिक्का उछाला जाता है। यदि इस पर शीर्ष प्राप्त होता है तो एक पाँसे का युग्म उछाला जाता है तथा उन पर प्राप्त संख्याओं को जोड़कर नोट कर लिया जाता है। यदि पुच्छ आता है तो $11$ पत्तों की एक गड्डी $2, 3, 4,.......,12$ में से एक पत्ता खींचा जाता है एवं उस पर अंकित संख्या को नोट किया जाता है तो इस बात की प्रायिकता कि नोट की हुई संख्या $7$ या $8$ हो, है
यदि $A$ तथा $B$ दो परस्पर अपवर्जी घटनाएँ हों, तो $P\,(A + B) = $
एक घुड़-दौड़ में तीन घोड़ों के अनुकूल संयोगानुपात $1:2 , 1:3$ व $1:4$ हैं, तो किसी एक घोड़े के द्वारा दौड़ जीते जाने की प्रायिकता है
घटनाएँ $A$ और $B$ इस प्रकार हैं कि $P ( A )=0.42, P ( B )=0.48$ और $P ( A$ और $B )=0.16 .$ ज्ञात कीजिए
$P ( B-$ नहीं)
यदि $P(B) = \frac{3}{4}$, $P(A \cap B \cap \bar C) = \frac{1}{3}{\rm{ }}$ तथा $P(\bar A \cap B \cap \bar C) = \frac{1}{3},$ तब $P(B \cap C)$ का मान है