एक छात्रावास में $60 \%$ विद्यार्थी हींदी का, $40 \%$ अंग्रेज़ी का और $20 \%$ दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।
प्रायिकता ज्ञात कीजिए कि वह न तो हींदी और न ही अंग्रेज़ी का अखबार पढती है।
Let $H$ denote the students who read Hindi newspaper and $E$ denote the students who read English newspaper.
It is given that, $\mathrm P(H)=60 \%=\frac{60}{100}=\frac{3}{5}$
$\mathrm{P}(\mathrm{E})=40 \%=\frac{40}{100}=\frac{2}{5}$
$P(H \cap E)=20 \%=\frac{20}{100}=\frac{1}{5}$
Probability that a student reads Hindi and English newspaper is,
$\mathrm{P}(\mathrm{H} \cup \mathrm{E})^{\prime}=1-\mathrm{P}(\mathrm{H} \cup \mathrm{E})$
$=1-\{\mathrm{P}(\mathrm{H})+\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{H} \cap \mathrm{E})\}$
$=1-\left(\frac{3}{5}+\frac{2}{5}-\frac{1}{5}\right)$
$=1-\frac{4}{5}$
$=\frac{1}{5}$
दो पासे स्वतंत्र रुप से फेंके जाते हैं। माना पहले पासे पर प्रकट होने वाली संख्या के दूसरे पासे पर प्रकट होने वाली संख्या से कम होने की घटना $\mathrm{A}$ है, पहले पासे पर सम संख्या तथा दसरे पासे पर विषम संख्या के प्रकट होने की घटना $\mathrm{B}$ है और पहले पासे पर विषम संख्या तथा दूसरे पासे पर सम संख्या के प्रकट होने की घटना $\mathrm{C}$ है। तो
दो गेंद एक बॉक्स से बिना प्रतिस्थापित किए निकाली जाती है। बॉक्स में $10$ काली और $8$ लाल गेदें हैं तो प्रायिकता ज्ञात कीजिए एक काली तथा दूसरी लाल हो।
$23$ व्यक्तियों की एक समिति, जो एक गोलाकार मेज के चारों ओर बैठते हैं। दो व्यक्तियों के एक साथ बैठने के प्रतिकूल संयोगानुपात हैं
यदि $A$ तथा $B$ दो स्वतन्त्र घटनाएँ हों, तो $P\,(A + B) = $
$A$ तथा $B$ दो ऐसी घटनाएँ हैं कि $P(A) = 0.4$ , $P\,(A + B) = 0.7$,$P\,(AB) = 0.2,$ तो $P\,(B) = $