If $E$ and $F$ are independent events such that $0 < P(E) < 1$ and $0 < P\,(F) < 1,$ then
$E$ and ${F^c}$ (the complement of the event $F$) are independent
${E^c}$ and ${F^c}$ are independent
$P\,\left( {\frac{E}{F}} \right) + P\,\left( {\frac{{{E^c}}}{{{F^c}}}} \right) = 1$
All of the above
Consider an experiment of tossing a coin repeatedly until the outcomes of two consecutive tosses are same. If the probability of a random toss resulting in head is $\frac{1}{3}$, then the probability that the experiment stops with head is.
A die is tossed thrice. Find the probability of getting an odd number at least once.
$A$ and $B$ are events such that $P(A)=0.42$, $P(B)=0.48$ and $P(A$ and $B)=0.16 .$ Determine $P (A$ or $B).$
In a class of $60$ students, $30$ opted for $NCC$ , $32$ opted for $NSS$ and $24$ opted for both $NCC$ and $NSS$. If one of these students is selected at random, find the probability that The student opted for $NCC$ or $NSS$.
In a class of $60$ students, $30$ opted for $NCC$ , $32$ opted for $NSS$ and $24$ opted for both $NCC$ and $NSS$. If one of these students is selected at random, find the probability that The student has opted neither $NCC$ nor $NSS$.