- Home
- Standard 11
- Mathematics
4-1.Complex numbers
medium
Let $A =\left\{\theta \in(0,2 \pi): \frac{1+2 i \sin \theta}{1- i \sin \theta}\right.$ is purely imaginary $\}$. Then the sum of the elements in $A$ is
A
$\pi$
B
$2 \pi$
C
$4 \pi$
D
$3 \pi$
(JEE MAIN-2023)
Solution
$z=\frac{1+2 i \sin \theta}{1-i \sin \theta} \times \frac{1+i \sin \theta}{1+i \sin \theta}$
$z=\frac{1-2 \sin ^2 \theta+i(3 \sin \theta)}{1+\sin ^2 \theta}$
$\operatorname{Re}(z)=0$
$\frac{1-2 \sin ^2 \theta}{1+\sin ^2 \theta}=0$
$\sin \theta=\frac{ \pm 1}{\sqrt{2}}$
$A=\left\{\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}\right\}$
$\text { sum }=4 \pi(\text { Option } 3)$
Standard 11
Mathematics