4-1.Complex numbers
medium

જો કોઇક સંકર સંખ્યા $z$ માટે $\left| z \right| \ge 2$ થાય,તો $\left| {z + \frac{1}{2}} \right|$ નું ન્યૂનતમ મૂલ્ય મેળવો. .

A

$\frac{5}{2}$ થી ચુસ્ત વધારે છે.

B

$\;\frac{3}{2}$ થી ચુસ્ત વધારે છે પરંતુ $\frac{5}{2}$ થી ઓછું છે.

C

બરાબર $\frac{5}{2}$ થાય

D

અંતરાલ $(1,2)$ માં આવેલ છે.

(JEE MAIN-2014)

Solution

$|z| \geq 2$ is the region on or outside circle whose centre is $(0,0)$ and the radius is $2$ .

Minimum $\left|z+\frac{1}{2}\right|$ is distance of $z$, which lies on circle $|z|=2$ from $\left(-\frac{1}{2}, 0\right)$ therefore, minimum $\left|z+\frac{1}{2}\right|=$ Distance of $\left(-\frac{1}{2}, 0\right)$ from $(-2,0)$

$=\sqrt{\left(-2+\frac{1}{2}\right)^{2}+0}=\frac{3}{2}=\sqrt{\left(\frac{-1}{2}+2\right)^{2}+0}=\frac{3}{2}$

Hence, minimum value of $\left|z+\frac{1}{2}\right|$ lies in the interval $(1,2)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.