4-2.Quadratic Equations and Inequations
hard

સમીકરણ $x+1-2 \log _{2}\left(3+2^{x}\right)+2 \log _{4}\left(10-2^{-x}\right)=0$ ના ઉકેલનો સરવાળો મેળવો.

A

$\log _{2} 14$

B

$\log _{2} 11$

C

$\log _{2} 12$

D

$\log _{2} 13$

(JEE MAIN-2021)

Solution

$x+1-2 \log _{2}\left(3+2^{x}\right)+2 \log _{4}\left(10-2^{-x}\right)=0$

$\log _{2}\left(2^{x+1}\right)-\log _{2}\left(3+2^{x}\right)^{2}+\log _{2}\left(10-2^{-x}\right)=0$

$\log _{2}\left(\frac{2^{x+1} \cdot\left(10-2^{-x}\right)}{\left(3+2^{x}\right)^{2}}\right)=0$

$\frac{2\left(10.2^{x}-1\right)}{\left(3+2^{x}\right)^{2}}=1$

$\Rightarrow 20.2^{x}-2=9+2^{2 x}+6.2^{x}$

$\therefore\left(2^{x}\right)^{2}-14\left(2^{x}\right)+11=0$

Roots are $2^{x_{1}} \& 2^{x_{2}}$

$\therefore 2^{x_{1}} \cdot 2^{x_{2}}=11$

$x_{1}+x_{2}=\log _{2}(11)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.