दो सदिशों $\overrightarrow{ A }$ तथा $\overrightarrow{ B }$ के परिमाण समान है। $(\overrightarrow{ A }+\overrightarrow{ B })$ का परिमाण $(\overrightarrow{ A }-\overrightarrow{ B })$ के परिमाण का $n$ गुना है। $\overrightarrow{ A }$ तथा $\overrightarrow{ B }$ के मध्य कोण है।
${\cos ^{ - 1}}\left[ {\frac{{{n^2} - 1}}{{{n^2} + 1}}} \right]$
${\cos ^{ - 1}}\left[ {\frac{{n - 1}}{{n + 1}}} \right]$
${\sin ^{ - 1}}\left[ {\frac{{{n^2} - 1}}{{{n^2} + 1}}} \right]$
${\sin ^{ - 1}}\left[ {\frac{{n - 1}}{{n + 1}}} \right]$
यदि सदिशों $P, Q$ तथा $R$ के परिमाण क्रमश: $5, 12$ तथा $13$ इकाई हैं तथा $\mathop P\limits^ \to + \mathop Q\limits^ \to = \mathop R\limits^ \to $ है तो $Q$ तथा $R$ के बीच कोण है
दो सदिशों $\mathop A\limits^ \to $ तथा $\mathop B\limits^ \to $ के मध्य कोण $\theta $ हो तो इनके योग का मान होगा
यदि $|{\mathop V\limits^ \to _1} + {\mathop V\limits^ \to _2}|\, = \,|{\mathop V\limits^ \to _1} - {\mathop V\limits^ \to _2}|$ तथा ${V_2}$ नियत हैं, तो
तीन सदिश $\mathop A\limits^ \to = 3\hat i - 2\hat j + \hat k,\,\mathop B\limits^ \to = \hat i - 3\hat j + 5\hat k$ तथा $\mathop C\limits^ \to = 2\hat i + \hat j - 4\hat k$ बनाते हैं
चित्र में $ABCDEF$ एक समषट्भुज है। $\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} + \overrightarrow {AE} + \overrightarrow {AF} $ का मान है ($\overrightarrow {AO} $ में)