3-1.Vectors
hard

दो सदिशों $\overrightarrow{ A }$ तथा $\overrightarrow{ B }$ के परिमाण समान है। $(\overrightarrow{ A }+\overrightarrow{ B })$ का परिमाण $(\overrightarrow{ A }-\overrightarrow{ B })$ के परिमाण का $n$ गुना है। $\overrightarrow{ A }$ तथा $\overrightarrow{ B }$ के मध्य कोण है।

A

${\cos ^{ - 1}}\left[ {\frac{{{n^2} - 1}}{{{n^2} + 1}}} \right]$

B

${\cos ^{ - 1}}\left[ {\frac{{n - 1}}{{n + 1}}} \right]$

C

${\sin ^{ - 1}}\left[ {\frac{{{n^2} - 1}}{{{n^2} + 1}}} \right]$

D

${\sin ^{ - 1}}\left[ {\frac{{n - 1}}{{n + 1}}} \right]$

(JEE MAIN-2019) (JEE MAIN-2021)

Solution

$\begin{array}{*{20}{l}} {\left| {\vec A + \vec B} \right| = n\left| {\vec A – \vec B} \right|} \\ { \Rightarrow \,{A^2} + {B^2} + 2AB\,\cos \,\theta } \\ {\,\,\,\,\,\,\, = {n^2}\left( {{A^2} + {B^2} – 2AB\,\cos \,\theta } \right)} \\ { \Rightarrow \,\cos \,\theta \,\left( {1 + {n^2}} \right) = \frac{{2{a^2}\left( {{n^2} – 1} \right)}}{{2{a^2}}}\,\,} \\ {[A = B = c]} \\ {\cos \,\theta = \frac{{{n^2} – 1}}{{{n^2} + 1}}} \end{array}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.