यदि $x\cos \theta = y\cos \,\left( {\theta + \frac{{2\pi }}{3}} \right) = z\cos \,\left( {\theta + \frac{{4\pi }}{3}} \right)$ , तब $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ बराबर है

  • [IIT 1984]
  • A

    $1$

  • B

    $2$

  • C

    $0$

  • D

    $3\,\,\cos \theta $

Similar Questions

निम्नलिखित को सिद्ध कीजिए

$\sin ^{2} 6 x-\sin ^{2} 4 x=\sin 2 x \sin 10 x$

$\tan 3A - \tan 2A - \tan A = $

$\cos 2(\theta + \phi ) - 4\cos (\theta + \phi )\sin \theta \sin \phi + 2{\sin ^2}\phi   $ का मान है

$\cos ^{3}\left(\frac{\pi}{8}\right) \cdot \cos \left(\frac{3 \pi}{8}\right)+\sin ^{3}\left(\frac{\pi}{8}\right) \cdot \sin \left(\frac{3 \pi}{8}\right) \text { का मान }$ है

  • [JEE MAIN 2020]

यदि $\tan \theta = \frac{{\sin \alpha - \cos \alpha }}{{\sin \alpha + \cos \alpha }},$ तो $\sin \alpha + \cos \alpha $ व $\sin \alpha - \cos \alpha $ बराबर होंगे