જો ${a_1},{a_2},{a_3}.....{a_n}....$ એ સમગુણોતર શ્રેણીમાં હોય તો $\left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}}\\{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}\end{array}\,} \right|$ ની કિમંત મેળવો.
$-2$
$1$
$2$
$0$
જો સમીકરણ સંહતિ
$2 x+y-z=5$
$2 x-5 y+\lambda z=\mu$
$x+2 y-5 z=7$
ને અસંખ્ય ઉકેલો હોય,તો
$(\lambda+\mu)^2+(\lambda-\mu)^2=........$
$c \in R$ ની મહતમ કિમંત મેળવો કે જેથી સુરેખ સમીકરણો $x - cy - cz = 0 \,\,;\,\, cx - y + cz = 0 \,\,;\,\, cx + cy - z = 0 $ ને શૂન્યતર ઉકેલ છે .
સમીકરણની સંહતિ $2x + 3y + 4z = 9$,$4x + 9y + 3z = 10,$$5x + 10y + 5z = 11$તો $x$ ની કિમત મેળવો.
$\lambda $ ની કિમંતોનો ગણ . . . . થાય જો સુરેખ સમીકરણો $x - 2y - 2z = \lambda x$ ; $x + 2y + z = \lambda y$ ; $-x - y = \lambda z$ એ શૂન્યતર ઉકેલ હોય.
જો સમીકરણ સંહિત
$ 2 x+7 y+\lambda z=3 $
$ 3 x+2 y+5 z=4 $
$ x+\mu y+32 z=-1$
ને અસંખ્ય ઉકેલો હોય, તો $(\lambda-\mu)=$...........