સમીકરણ ${t^2}{x^2} + |x| + \,9 = 0$ ના બધાજ બીજોનો ગુણાકાર . . . . .
હંમેશા ધન હોય છે.
હંમેશા ઋણ હોય છે.
અસ્તિત્વ નથી.
એકપણ નહી
સમીકરણ $x|x-1|+|x+2|+a=0$ ને બરાબર એક જ વાસ્તવિક બીજ હોય, તેવા તમામ $a \in R$ નો ગણ $........$ છે.
જો $\alpha$ અને $\beta$ એ સમીકરણ $\mathrm{x}^{2}-\mathrm{x}-1=0 $ ના બીજ હોય અને $\mathrm{p}_{\mathrm{k}}=(\alpha)^{\mathrm{k}}+(\beta)^{\mathrm{k}}, \mathrm{k} \geq 1,$ તો આપેલ પૈકી ક્યૂ વિધાન સત્ય છે ?
સમીકરણ $\mathrm{e}^{4 \mathrm{x}}+\mathrm{e}^{3 \mathrm{x}}-4 \mathrm{e}^{2 \mathrm{x}}+\mathrm{e}^{\mathrm{x}}+1=0$ ના વાસ્તવિક બીજની સંખ્યા મેળવો.
સમીકરણ $\left|x^2-8 x+15\right|-2 x+7=0$ ના તમામ બીજનો સરવાળો $...........$ છે.
જો $r_1, r_2, r_3$ એ સમીકરણ $x^3 -2x^2 + 4x + 5074 = 0$ ના બીજો હોય તો $(r_1 + 2)(r_2 + 2)(r_3 + 2)$ ની કિમત મેળવો