3.Trigonometrical Ratios, Functions and Identities
medium

If $a\,\cos 2\theta + b\,\sin 2\theta = c$  has $\alpha$ and $\beta$ as its solution, then the value of $\tan \alpha + \tan \beta $ is

A

$\frac{{c + a}}{{2b}}$

B

$\frac{{2b}}{{c + a}}$

C

$\frac{{c - a}}{{2b}}$

D

$\frac{b}{{c + a}}$

Solution

(b) $a\cos 2\theta + b\sin 2\theta = c$ 

==> $a\left( {\frac{{1 – {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right) + b\frac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} = c$ 

$ \Rightarrow $ $a – a{\tan ^2}\theta + 2b\tan \theta = c + c{\tan ^2}\theta $

$ \Rightarrow $$ – (a + c){\tan ^2}\theta + 2b\,\tan \theta + (a – c) = 0$

$\therefore \tan \alpha + \tan \beta = – \frac{{2b}}{{ – (c + a)}} = \frac{{2b}}{{c + a}}$ .

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.