If $a\,\cos 2\theta + b\,\sin 2\theta = c$  has $\alpha$ and $\beta$ as its solution, then the value of $\tan \alpha + \tan \beta $ is

  • A

    $\frac{{c + a}}{{2b}}$

  • B

    $\frac{{2b}}{{c + a}}$

  • C

    $\frac{{c - a}}{{2b}}$

  • D

    $\frac{b}{{c + a}}$

Similar Questions

If $A + B + C = {180^o},$ then the value of $(\cot B + \cot C)$ $(\cot C + \cot A)\,\,(\cot A + \cot B)$ will be

The value of $\frac{1}{4} \,\,tan \frac{\pi}{8} +\frac{1}{8} \,\,tan \frac{\pi}{16}+\frac{1}{16} \,\,tan \frac{\pi}{32}+.\,.\,.\,\infty  $ terms is equal to-

$\cos 20^\circ \cos 40^\circ \cos 80^\circ = $

Let $\frac{\pi}{2} < x < \pi$ be such that $\cot x=\frac{-5}{\sqrt{11}}$. Then $\left(\sin \frac{11 x}{2}\right)(\sin 6 x-\cos 6 x)+\left(\cos \frac{11 x}{2}\right)(\sin 6 x+\cos 6 x)$ is equal to

  • [IIT 2024]

If $\frac{\sqrt{2} \sin \alpha}{\sqrt{1+\cos 2 \alpha}}=\frac{1}{7}$ and $\sqrt{\frac{1-\cos 2 \beta}{2}}=\frac{1}{\sqrt{10}}$ $\alpha, \beta \in\left(0, \frac{\pi}{2}\right),$ then $\tan (\alpha+2 \beta)$ is equal to

  • [JEE MAIN 2020]