If $a\,\cos 2\theta + b\,\sin 2\theta = c$ has $\alpha$ and $\beta$ as its solution, then the value of $\tan \alpha + \tan \beta $ is
$\frac{{c + a}}{{2b}}$
$\frac{{2b}}{{c + a}}$
$\frac{{c - a}}{{2b}}$
$\frac{b}{{c + a}}$
The value of $\frac{1}{4} \,\,tan \frac{\pi}{8} +\frac{1}{8} \,\,tan \frac{\pi}{16}+\frac{1}{16} \,\,tan \frac{\pi}{32}+.\,.\,.\,\infty $ terms is equal to-
In any triangle $ABC ,$ ${\sin ^2}\frac{A}{2} + {\sin ^2}\frac{B}{2} + {\sin ^2}\frac{C}{2}$ is equal to
If $90^\circ < A < 180^\circ $ and $\sin A = \frac{4}{5},$ then $\tan \frac{A}{2}$ is equal to
If $\sin \alpha = \frac{{336}}{{625}}$ and $450^\circ < \alpha < 540^\circ ,$ then $\sin \left( {\frac{\alpha }{4}} \right) = $
If $A$ lies in the third quadrant and $3\,\tan A - 4 = 0,$ then $5\,\sin 2A + 3\,\sin A + 4\,\cos A = $