જો $(1 -x + 2x^2)^n$ = $a_0 + a_1x + a_2x^2+..... a_{2n}x^{2n}$ , $n \in N$ , $x \in R$ અને $a_0$ , $a_2$ અને $a_1$ એ સમાંતર શ્રેણીમાં હોય તો $n$ ની કેટલી શક્ય કિમંતો મળે.
માત્ર બેજ
માત્ર એક્જ
માત્ર ત્રણજ
એકપણ પણ કિમંત ન મળે.
ધારોકે $f$ એ $R$ પર વ્યાખ્યાયિત કોઈ વિધેય છે અને તે, શરત $|f(x)-f(y)| \leq\left|(x-y)^{2}\right|, \forall \,(x, y) \in R$ નું સમાધાન કરે છે. જો $f(0) = 1$ તો
જો વિધેય $f(x) = 2x^3 + ax^2 + bx$ એ અંતરાલ $[-1, 1 ]$ પર બિંદુ $c = \frac{1}{2}$ આગળ રોલના પ્રમેયનું પાલન કરતું હોય $2a + b$ ની કિમંત મેળવો.
મધ્યકમાન પ્રમેય મુજબ ,$a < x_1 < b$ પર $f(b) -f(a) = (b -a) f '(x_1);$ હોય અને $f(x) = 1/x$ હોય તો $x_1 = ?$
$x \in[-4,2]$ માં વિધેય $f(x)=x^{2}+2 x-8$ માટે રોલનું પ્રમેય ચકાસો.
ચકાસો કે આપેલ વિધેયમાં રોલનું પ્રમેય લગાડી શકાય કે નહિ : $f(x)=[x],$ $x \in[-2,2]$