જો $f(x)$ માટે નો સબંધ $f\left( {\frac{{5x - 3y}}{2}} \right) = \frac{{5f(x) - 3f(y)}}{2}\forall x,y\, \in \,R$ અને $f(0)=1, f'(0)=2$ હોય તો $sin(f(x))$ નો આવર્તમાન મેળવો.

  • A

    $2\pi $

  • B

    $\pi $

  • C

    $3\pi $

  • D

    $4\pi $

Similar Questions

જો $f( x + y )=f( x ) f( y )$ અને $\sum \limits_{ x =1}^{\infty} f( x )=2, x , y \in N$ જ્યાં $N$ એ બધી પ્રાકૃતિક સંખ્યાઓનો ગણ હોય તો $\frac{f(4)}{f(2)}$ ની કિમત શોધો 

  • [JEE MAIN 2020]

સાબિત કરો કે $f: N \rightarrow N$, $f(x)=2 x$ વડે વ્યાખ્યાયિત વિધેય એક-એક છે, પરંતુ વ્યાપ્ત નથી. 

જો વિધેય  $f(x+y)=f(x) f(y)$ for all $x, y \in N$ એવી રીતે વ્યાખ્યાયિત હોય કે જેથી, $f(1)=3$ અને $\sum\limits_{x = 1}^n {f\left( x \right) = 120,} $ તો $n$ નું મૂલ્ય શોધો. 

$f (x)$ = $\sqrt {{{\log }_2}\left( {\frac{{10x - 4}}{{4 - {x^2}}}} \right) - 1} $ નો પ્રદેશગણ મેળવો.

જો $f(x) = \cos (\log x)$, તો $f({x^2})f({y^2}) - \frac{1}{2}\left[ {f\,\left( {\frac{{{x^2}}}{2}} \right) + f\left( {\frac{{{x^2}}}{{{y^2}}}} \right)} \right] =$