10-1.Circle and System of Circles
hard

यदि एक रेखा $y = mx + c$ वृत्त $( x -3)^{2}+ y ^{2}=1$ की एक स्पर्श रेखा है तथा यह एक रेखा $L_{1}$ पर लम्ब है, जहाँ $L_{1}$ वृत्त $x ^{2}+ y ^{2}=1$ के बिन्दु $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ पर स्पर्श रेखा है, तो

A

$c^{2}-6 c+7=0$

B

$c^{2}+6 c+7=0$

C

$c^{2}+7 c+6=0$

D

$c^{2}-7 c+6=0$

(JEE MAIN-2020)

Solution

Slope of tangent to $\mathrm{x}^{2}+\mathrm{y}^{2}=1$ at $\mathrm{P}\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$

$2 \mathrm{x}+2 \mathrm{yy}^{\prime}=\left.0 \Rightarrow \mathrm{m}_{\mathrm{T}}\right|_{\mathrm{P}}=-1$

$y=m x+c$ is tangent to $(x-3)^{2}+y^{2}=1$

$y=x+c$ is tangent to $(x-3)^{2}+y^{2}=1$

$\left|\frac{c+3}{\sqrt{2}}\right|=1 \Rightarrow c^{2}+6 c+7=0$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.