Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

If a number of ellipse be described having the same major axis $2a$  but a variable minor axis then the tangents at the ends of their latera recta pass through fixed points which can be

A

$(0, a)$

B

$(0, - a)$

C

$(0, 0)$

D

both $(A)$ and $(B)$

Solution

Equation of the ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

$x$ axis is the major axis Latus rectum co-efficient $\left(a e, \frac{b^{2}}{a}\right)$

Equation of tangent $\pm \frac{x}{a^{2}} a P \pm \frac{y}{b^{2}} \cdot \frac{b^{2}}{a}=1$

$\frac{P^{x}}{a}+\frac{y}{a}-1=0$

$P x+y-a=0$

$(y-a)+P x=0$

$L_{1}+\lambda L_{2}=0$

$y=a \quad x=0$

So, $(0, a)$ and $(0,-a)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.