જો એક બહુકોણના બધા આંતરિક ખૂણાઓ સમાંતર શ્રેણીમાં હોય અને તેમની વચ્ચેનો સામાન્ય તફાવત $10^o$ હોય તો ન્યૂનતમ ખૂણો મેળવો
$60$
$70$
$120$
$75$
જો $x=\sum \limits_{n=0}^{\infty} a^{n}, y=\sum\limits_{n=0}^{\infty} b^{n}, z=\sum\limits_{n=0}^{\infty} c^{n}$, જ્યાં $a , b , c$ એ સમાંતર શ્રેણી$(A.P.)$ માં છે. $|a| < 1,|b| < 1,|c| < 1$, $abc$ $\neq 0$ તો:
જો કોઈ વાસ્તવિક $x$ માટે $1, \log _{10}\left(4^{x}-2\right)$ અને $\log _{10}\left(4^{x}+\frac{18}{5}\right)$ એ સમાંતર શ્રેણીમાં હોય તો $\left|\begin{array}{ccc}2\left(x-\frac{1}{2}\right) & x-1 & x^{2} \\ 1 & 0 & x \\ x & 1 & 0\end{array}\right|$ ની કિમંત મેળવો.
$\Delta {\text{ABC}}$ માટે $a\,\,{\cos ^2}\frac{C}{2} + c\,\,{\cos ^2}\frac{A}{2}\,\, = \,\,\frac{{3b}}{2}$ તો બાજુ એ ${\text{a, b, c }}......$
અહી $S_{n}$ એ સમાંતર શ્રેણીના $n$- નો સરવાળો દર્શાવે છે. જો $S_{10}=530, S_{5}=140$ તો $\mathrm{S}_{20}-\mathrm{S}_{6}$ ની કિમંત મેળવો.
ફિબોનાકી શ્રેણી,
$1 = {a_1} = {a_2}{\rm{ }}$ અને $n\, > \,2$ માટે${a_n} = {a_{n - 1}} + {a_{n - 2}},$ દ્વારા વ્યાખ્યાયિત થાય છે.
$n=1,2,3,4,5$ માટે $\frac{a_{n+1}}{a_{n}},$ મેળવો.