જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=n(n+2)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$a_{n}=n(n+2)$

Substituting $n=1,2,3,4$ and $5,$ we obtain

$a_{1}=1(1+2)=3$

$a_{2}=2(2+2)=8$

$a_{3}=3(3+2)=15$

$a_{4}=4(4+2)=24$

$a_{5}=5(5+2)=35$

Therefore, the required terms are $3,8,15,24$ and $35 .$

Similar Questions

જો $a_r > 0, r \in N$ અને $a_1$,$a_2$,$a_3$,..,$a_{2n}$ સમાંતર શ્રેણીમાં હોય,તો$\frac{{{a_1}\, + \,{a_{2n}}}}{{\sqrt {{a_1}} + \sqrt {{a_2}} }}\, + \,\frac{{{a_2}\, + \,{a_{2n - 1}}}}{{\sqrt {{a_2}} + \sqrt {{a_3}} }}\, + \,\frac{{{a_3}\, + \,{a_{2n - 2}}}}{{\sqrt {{a_3}} \, + \,\sqrt {{a_4}} }}\, + \,..\, + \,\frac{{{a_n}\, + \,{a_{n + 1}}}}{{\sqrt {{a_n}\,} \, + \,{a_{n + 1}}}}\, = \,.........$

ધારો કે $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \ldots$ એ ધન પદોવાળી સમાંતર શ્રેણી છે. ધારોકે

$A_k=a_1^2-a_2^2+a_3^2-a_4^2+\ldots+a_{2 k-1}^2-a_{2 k}^2$ .

જો $\mathrm{A}_3=-153, \mathrm{~A}_5=-435$ અને $\mathrm{a}_1^2+\mathrm{a}_2^2+\mathrm{a}_3^2=66$ હોય, તો $\mathrm{a}_{17}-\mathrm{A}_7=$............

  • [JEE MAIN 2024]

$a_1, a_2, a_3, ….a_n$ સમાંતર શ્રેણીમાં છે. જો તેનો સામાન્ય તફાવત $d$ હોય, તો $sin\,\, d[cosec\ a_1 . cosec\ a_2 + cosec\ a_2 . cosec\ a_3 +….+cosec\ a_{n -1} . cosec\ a_n] $ ની કિમત મેળવો.

સમાંતર શ્રેણીના પ્રથમ ત્રણ પદોનો સરવાળો $39$ અને તેના છેલ્લા ચાર પદોનો સરવાળો $178$ છે. જો પ્રથમ પદ $10$ હોય તો સમાંતર શ્રેણીનો મધ્યસ્થ મેળવો.

  • [JEE MAIN 2015]

જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=\frac{n}{n+1}$