સમાંતર શ્રેણી $b_{1}, b_{2}, \ldots,$ $b_{ m }$ નો સામાન્ય તફાવત એ સમાંતર શ્રેણી $a _{1}, a _{2}, \ldots, a _{ n }$ ના સામાન્ય તફાવત કરતાં $2$ વધારે છે જો $a _{40}=-159, a _{100}=-399$ અને $b _{100}= a _{70},$ હોય તો $b _{1}$ ની કિમત શોધો.
અહી $a_1=8, a_2, a_3, \ldots a_n$ એ સમાંતર શ્રેણી માં છે . જો પ્રથમ ચાર પદોનો સરવાળો $50$ અને અંતિમ ચાર પદોનો સરવાળો $170$ હોય તો મધ્યના બે પદોનો ગુણાકાર મેળવો.
સાબિત કરો કે સમાંતર શ્રેણીમાં $(m + n)$ માં તથા $(m - n)$ માં પદોનો સરવાળો $m$ માં પદ કરતાં બમણો થાય છે.
જો સમાંતર શ્રેણીના $p$ માં પદ $q$ માં પદ વચ્ચેનો સમાંતર મધ્યક એ તેના $r$ માં અને $s$ માં પદ વચ્ચે નાં સમાંતર મધ્યક જેટલો હોય, તો $p + q = ......$