જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=n(n+2)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$a_{n}=n(n+2)$

Substituting $n=1,2,3,4$ and $5,$ we obtain

$a_{1}=1(1+2)=3$

$a_{2}=2(2+2)=8$

$a_{3}=3(3+2)=15$

$a_{4}=4(4+2)=24$

$a_{5}=5(5+2)=35$

Therefore, the required terms are $3,8,15,24$ and $35 .$

Similar Questions

સમાંતર શ્રેણી $b_{1}, b_{2}, \ldots,$ $b_{ m }$ નો સામાન્ય તફાવત એ સમાંતર શ્રેણી $a _{1}, a _{2}, \ldots, a _{ n }$ ના સામાન્ય તફાવત કરતાં $2$ વધારે છે જો $a _{40}=-159, a _{100}=-399$ અને $b _{100}= a _{70},$ હોય તો  $b _{1}$ ની કિમત શોધો.

  • [JEE MAIN 2020]

અહી $a_1=8, a_2, a_3, \ldots a_n$  એ સમાંતર શ્રેણી માં છે . જો પ્રથમ ચાર પદોનો સરવાળો  $50$ અને અંતિમ ચાર પદોનો સરવાળો  $170$ હોય તો મધ્યના બે પદોનો ગુણાકાર મેળવો.

  • [JEE MAIN 2023]

સાબિત કરો કે સમાંતર શ્રેણીમાં $(m + n)$ માં તથા $(m - n)$ માં પદોનો સરવાળો $m$ માં પદ કરતાં બમણો થાય છે. 

ધારો કે $T _{ r }$ એ એક સમાંતર ક્ષેન્ની $(A.P.)$ નું $r$ મું પદ છે. કોઈક $m$ માટે, જો $T _{ m }=\frac{1}{25}, T_{25}=\frac{1}{20}$ અને $20 \sum_{ r =1}^{25} T_{ r }=13$ હોય, તો $5 m \sum_{ r = m }^{2 m} T _{ r }=$ ___________.

  • [JEE MAIN 2025]

જો સમાંતર શ્રેણીના $p$  માં પદ $q$ માં પદ વચ્ચેનો સમાંતર મધ્યક એ તેના $r$ માં અને $s$ માં પદ વચ્ચે નાં સમાંતર મધ્યક જેટલો હોય, તો $p + q = ......$