यदि ${(1 + x)^{15}}$ के प्रसार में $(2r + 3)$ वें तथा ${(r - 1)^{th}}$ वें पदों के गुणांक बराबर हैं, तो $r$ का मान है

  • A

    $5$

  • B

    $6$

  • C

    $4$

  • D

    $3$

Similar Questions

माना $\left(\mathrm{x}-\frac{3}{\mathrm{x}^2}\right)^{\mathrm{n}}, \mathrm{x} \neq 0, \mathrm{n} \in \mathrm{N}$, के प्रसार में प्रथम तीन पदों के गुणांको का योग 376 है। तो $\mathrm{x}^4$ का गुणांक ___________ है।

  • [JEE MAIN 2023]

यदि ${(1 + x)^n}$ के विस्तार में द्वितीय, तृतीय तथा चतुर्थ पदों के गुणांक समान्तर श्रेणी $(A.P.)$ में हों, तब $n$ बराबर है

  • [IIT 1994]

${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ के प्रसार में ${x^{32}}$ का गुणांक होगा

यदि ${(1 + ax)^n}$, $(n \ne 0)$ के विस्तार में प्रथम तीन पद क्रमश: $1, 6x$ व $16x^2$ हैं, तो $a$ व $n$ के मान क्रमश: होंगे

यदि $(1+x)^{34}$ के प्रसार में $(r-5)^{th}$ और$(2 r-1)^{th}$ पदों के गुणांक समान हों $r$ ज्ञात कीजिए।