यदि ${(1 + x)^{15}}$ के प्रसार में $(2r + 3)$ वें तथा ${(r - 1)^{th}}$ वें पदों के गुणांक बराबर हैं, तो $r$ का मान है
$5$
$6$
$4$
$3$
प्राकृत संख्या $m$, जिसके लिए $\left( x ^{ m }+\frac{1}{ x ^{2}}\right)^{22}$ के द्विपद प्रसार में $x$ का गुणांक $1540$ है
${\left( {2{x^2} - \frac{1}{x}} \right)^{12}}$ के प्रसार में $x$ से स्वतंत्र पद होगा
${\left( {\sqrt x - \frac{2}{x}} \right)^{18}}$ में $x$ से स्वतंत्र पद है
$\sum\limits_{j = 0}^{200} {{{(1 + x)}^j}} $ के विस्तार में ${x^{100}}$ का गुणांक है
यदि $\left(\mathrm{ax}^3+\frac{1}{\mathrm{bx}^{\frac{1}{3}}}\right)^{15}$ के प्रसार में $\mathrm{x}^{15}$ का गुणांक $\left(\mathrm{ax}^{\frac{1}{3}}-\frac{1}{\mathrm{bx}^3}\right)^{15}$ के प्रसार, में $\mathrm{x}^{-15}$ के गुणांक के बराबर है, जहाँ $a$ तथा $b$ धनात्मक संख्याएँ है, तो ऐसे प्रत्येक क्रमित युग्म $(\mathrm{a}, \mathrm{b})$ के लिए :