If coefficients of $2^{nd}$, $3^{rd}$ and $4^{th}$ terms in the binomial expansion of ${(1 + x)^n}$ are in $A.P.$, then ${n^2} - 9n$ is equal to
$-7$
$7$
$14$
$-14$
The sum of all those terms which are rational numbers in the expansion of $\left(2^{1 / 3}+3^{1 / 4}\right)^{12}$ is:
If coefficient of ${(2r + 3)^{th}}$ and ${(r - 1)^{th}}$ terms in the expansion of ${(1 + x)^{15}}$ are equal, then value of r is
Coefficient of $x^{11}$ in the expansion of $\left(1+x^2\right)^4\left(1+x^3\right)^7\left(1+x^4\right)^{12}$ is
If the coefficients of $(r-5)^{th}$ and $(2 r-1)^{th}$ terms in the expansion of $(1+x)^{34}$ are equal, find $r$
Arrange the expansion of $\left(x^{1 / 2}+\frac{1}{2 x^{1 / 4}}\right)^n$ in decreasing powers of $x$.Suppose the coeff icients of the first three terms form an arithmetic progression. Then, the number of terms in the expansion having integer power of $x$ is