${(1 + x)^{43}}$ के विस्तार में $(2r + 1)$ वें पद और $(r + 2)$ वें पद के गुणांक बराबर हैं, तब $r$ का मान होगा
$14$
$15$
$13$
$16$
$\left(\frac{ x +1}{ x ^{2 / 3}- x ^{1 / 3}+1}-\frac{ x -1}{ x - x ^{1 / 2}}\right)^{10}, x \neq 0,1$ के प्रसार में ' $x$ ' से स्वतंत्र पद बराबर है
यदि ${\left( {{x^4} + \frac{1}{{{x^3}}}} \right)^{15}}$ के विस्तार में $r$ वें पद में ${x^4}$ आता है, तो $r = $
${\left( {{x^2} - \frac{1}{{3x}}} \right)^9}$ के प्रसार में $x$ रहित पद होगा
$\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}$ का मान ज्ञात कीजिए।
यदि धनात्मक पूर्णांकों $r > 1,n > 2$ के लिए ${(1 + x)^{2n}} $ के विस्तार में $x$ की $(3r)$ वीं तथा $(r + 2)$ वीं घांतों के गुणांक समान हों, तब