यदि एक दीर्घवृत्त के दीर्घ अक्ष की लम्बाई, इसके लघु अक्ष की लम्बाई की तिगुनी है, तो इसकी उत्केन्द्रता होगी
$\frac{1}{3}$
$\frac{1}{{\sqrt 3 }}$
$\frac{1}{{\sqrt 2 }}$
$\frac{{2\sqrt 2 }}{3}$
बिन्दु $(h, 0)$ से गुजरने वाली ऊर्र्वाधर रेखा दीर्घवृत्त $\frac{x^2}{4}+\frac{y^2}{3}=1$ को बिन्दुओं $P$ तथा $Q$ पर काटती है। माना कि बिन्दुओं $P$ तथा $Q$ पर दीर्घवृत्त की स्पर्श रेखाएँ बिन्दु $R$ पर मिलती है। यदि $\Delta(h)=$ त्रिभुज $P Q R$ का क्षेत्रफल $\Delta_1=\max _{1 / 2 \leq h \leq 1} \Delta(h)$ और $\Delta_2=\min _{1 / 2 \leq h \leq 1} \Delta(h)$ है, तब $\frac{8}{\sqrt{5}} \Delta_1-8 \Delta_2=$
माना कि $T_1$ एवं $T_2$ दीर्घवृत (ellipse) $E: \frac{x^2}{6}+\frac{y^2}{3}=1$ एवं परवलय (parabola) $P: y^2=12 x$ की दो भिन्न उभयनिष्ठ स्पर्श रेखाएं (distinct common tangents) हैं। माना कि स्पर्श रेखा $T_1, P$ एवं $E$ को क्रमशः बिन्दुओं $A_1$ एवं $A_2$ पर स्पर्श करती है और स्पर्श रेखा $T_2, P$ एवं $E$ को क्रमशः बिन्दुओं $A_4$ एवं $A_3$ पर स्पर्श करती है। तब निम्न में से कौन सा(से) कथन सत्य है(हैं)?
$(A)$ चतुर्भुज $A_1 A_2 A_3 A_4$ का क्षेत्रफल $35$ वर्ग इकाई है
$(B)$ चतुर्भुज $A_1 A_2 A_3 A_4$ का क्षेत्रफल $36$ वर्ग इकाई है
$(C)$ स्पर्श रेखाएं $T_1$ एवं $T_2, x$-अक्ष को बिंदु $(-3,0)$ पर मिलती हैं
$(D)$ स्पर्श रेखाएं $T_1$ एवं $T_2, x$-अक्ष को बिंदु $(-6,0)$ पर मिलती हैं
दीर्घवृत्त $\frac{{{{(x - 1)}^2}}}{9} + \frac{{{{(y + 1)}^2}}}{{25}} = 1$ की उत्केन्द्रता है
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के नाभिलम्ब के सिरों के उत्केन्द्र कोण हैं
उस दीर्घवृत्त की उत्केन्द्रता जिसका नाभिलम्ब, नाभियों के बीच की दूरी के बराबर है, होगी