- Home
- Standard 11
- Mathematics
$15$ અવલોકનોનાં મધ્યક અને પ્રમાણત વિચલન અનુક્રમે $8$ અને $3$ માલુમ પડયા છે. ફરી ચકાસણી કરતાં એવું માલુમ પડયુ અવલોકન $20$ ને ભૂલથી $5$ વાંચવામાં આવ્યું હતું. તો સાચા વિચરણનું મૂલ્ય..............છે
$7$
$20$
$19$
$17$
Solution
We have
$\text { Variance }=\frac{\sum\limits_{ r =1}^{15} x _{ r }^{2}}{15}-\left(\frac{\sum\limits_{ r =1}^{15} x _{ r }}{15}\right)^{2}$
Now, as per information given in equation
$\frac{\sum x _{ r }^{2}}{15}-8^{2}=3^{2} \Rightarrow \sum x _{ T }^{2}=\log 5$
Now, the new $\sum x _{ r }^{2}=\log 5-5^{2}+20^{2}=1470$
And, new $\sum x _{ r }=(15 \times 8)-5+(20)=135$
Variance $=\frac{1470}{15}-\left(\frac{135}{15}\right)^{2}=98-81=17$
Similar Questions
આવૃતી વિતરણ
$\mathrm{x}$ | $\mathrm{x}_{1}=2$ | $\mathrm{x}_{2}=6$ | $\mathrm{x}_{3}=8$ | $\mathrm{x}_{4}=9$ |
$\mathrm{f}$ | $4$ | $4$ | $\alpha$ | $\beta$ |
માં જો મધ્યક અને વિચરણ અનુક્રમે $6$ અને $6.8$ છે. જો $x_{3}$ એ $8$ માંથી $7$ કરવામાં આવે છે તો નવી માહિતીનો મધ્યક મેળવો.