यदि आँकड़ें $x _{1}, x _{2}, \ldots, x _{10}$ इस प्रकार हैं कि इनमें से प्रथम चार का माध्य $11$, है बाकी छः का माध्य $16$ है तथा इन सभी के वर्गों का योग $2,000$ है, तो इन आँकड़ों का मानक विचलन हैं

  • [JEE MAIN 2019]
  • A

    $2\sqrt 2 $

  • B

    $2$

  • C

    $4$

  • D

    $\sqrt 2 $

Similar Questions

$10$ प्रेक्षणों $\mathrm{x}_1, \mathrm{x}_2, \ldots, \mathrm{x}_{10}$ के लिए $\sum_{\mathrm{i}=1}^{10}\left(\mathrm{x}_{\mathrm{i}}-\alpha\right)=2$ तथा $\sum_{i=1}^{10}\left(x_i-\beta\right)^2=40$ हैं, जहाँ $\alpha$ तथा $\beta$ धनात्मक पूर्णांक है। माना इन प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $\frac{6}{5}$ तथा $\frac{84}{25}$ है। तो $\frac{\beta}{\alpha}$ बराबर है:

  • [JEE MAIN 2024]

यदि आरोही क्रम में लिखी संख्याओं $3,5,7,2 k$, $12,16,21,24$ का माध्यिका के सापेक्ष माध्य विचलन 6 है, तो माध्यिका है

  • [JEE MAIN 2022]

निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।

तीन के प्रथम $10$ गुणज

$20$ प्रेक्षणों का प्रसरण $5$ है। यदि प्रत्येक प्रेक्षण को $2$ से गुणा किया गया हो तो प्राप्त प्रेक्षणों का प्रसरण ज्ञात कीजिए।

मान लीजिये की $n \geq 3$ एक प्राकृत संख्या है। दी गयी संख्याओं की सूची $x_1, x_2, \ldots, x_n$ का औसत तथा मानक विचलन क्रमानुसार $\mu$ और $\sigma$ है। एक नयीसंख्याओं की सूची $y_1, y_2, \ldots, y_n$ इस प्रकार बनाई जाती हैं कि $y_1=\frac{x_1+x_2}{2}, y_2=\frac{x_1+x_2}{2}$ और प्रत्येक $j=3,4, \ldots, n$ के लिए $y_j=x_j$ । यदि नयी सूची का औसत तथा मानक विचलन क्रमानुसार $\hat{\mu}$ और $\hat{\sigma}$ है तो निम्नलिखित में से कौन सा कथन आवश्यक रूप से सत्य है?

  • [KVPY 2014]