यदि गुणोत्तर श्रेढ़ी $a_1, a_2, a_3, \ldots$ जिसमें $a_1=\frac{1}{8}$ तथा $\mathrm{a}_2 \neq \mathrm{a}_1$ है, का प्रत्येक पद, अगले दो पदों का समांतर माध्य है तथा $S_n=a_1+a_2+\ldots+a_n$, है, तो $\mathrm{S}_{20}-\mathrm{S}_{18}$ बराबर है

  • [JEE MAIN 2024]
  • A

     $2^{ \mathrm{15}}$

  • B

    $-2^{18}$

  • C

    $2^{18}$

  • D

     $-2^{15}$

Similar Questions

यदि $2$ व $3$ के बीच $9$ समान्तर माध्य व हरात्मक माध्य रखे जायें तथा हरात्मक माध्य $H$, समान्तर माध्य $A$ के सगंत है, तो $A + \frac{6}{H}$ =

यदि $x, y, z$ तीन अऋणात्मक पूर्णांक इस प्रकार हैं कि $x+y+z=10$, तब $x y z+x y+y z+z x$ का अधिकतम संभव मान होगा

  • [KVPY 2013]

दो संख्याओं के बीच समान्तर माध्य, हरात्मक माध्य व गुणोत्तर माध्य  $\frac{{144}}{{15}}$, $15$ व $12$ हैं लेकिन यह क्रम आवश्यक नहीं है, तब हरात्मक माध्य, गुणोत्तर माध्य व समान्तर माध्य क्रमश: होंगे

किसी गुणोत्तर श्रेणी में तीन संख्याओं का योग $14$ है। यदि प्रथम दो संख्याओं में $1$ जोड़ दिया जाए एवं तीसरी में से $1$ घटा दिया जाए तो श्रेणी समान्तर श्रेणी बन जाती है, तो सबसे बड़ी संख्या होगी  

यदि दो राशियों का अनुपात $9:1$ है, तो दोनों राशियों के बीच गुणोत्तर और हरात्मक माध्य का अनुपात होगा