જો વિદ્યુતભાર $e$, ઇલેક્ટ્રોન દળ $m$, શૂન્યાવકાશમાં પ્રકાશનો વેગ $c$ અને પ્લાન્ક અચળાંક $h$ ને મૂળભૂત રાશિઓ તરીકે લેવામાં આવે, તો શૂન્યાવકાશની પરમીએબીલીટી $\mu _0$ ને કોના એકમ તરીકે દર્શાવી શકાય?
$\left( {\frac{h}{{m{e^2}}}} \right)$
$\left( {\frac{{hc}}{{m{e^2}}}} \right)$
$\left( {\frac{h}{{c{e^2}}}} \right)$
$\left( {\frac{{m{c^2}}}{{h{e^2}}}} \right)$
જો વેગમાન $[P]$, ક્ષેત્રફળ $[A]$ અને સમય $[T]$ ને મૂળભૂત રાશિઓ તરીકે લેવામાં આવે, તો શ્યાનતા ગુણાંકનું પરિમાણિક સૂત્ર $........$ થશે.
નીચેનામાંથી કયું સૂત્ર પારિમાણિક રીતે ખોટ્ટું છે?
બળનું સૂત્ર $ F = at + b{t^2} $ જયાં $t=$સમય હોય,તો $a$ અને $b$ ના પારિમાણીક સૂત્ર શું થશે?
$C$ અને $L$ અનુક્રમે કેપેસિટન્સ અને ઇન્ડકટન્સ હોય તો $LC$ નું પારિમાણિક સૂત્ર શું થાય?
નીચેનામાંથી કયા સંબંધની મદદથી પરિમાણનું પૃથ્થકરણ કરી શકાય છે?