- Home
- Standard 11
- Physics
જો વિદ્યુતભાર $e$, ઇલેક્ટ્રોન દળ $m$, શૂન્યાવકાશમાં પ્રકાશનો વેગ $c$ અને પ્લાન્ક અચળાંક $h$ ને મૂળભૂત રાશિઓ તરીકે લેવામાં આવે, તો શૂન્યાવકાશની પરમીએબીલીટી $\mu _0$ ને કોના એકમ તરીકે દર્શાવી શકાય?
$\left( {\frac{h}{{m{e^2}}}} \right)$
$\left( {\frac{{hc}}{{m{e^2}}}} \right)$
$\left( {\frac{h}{{c{e^2}}}} \right)$
$\left( {\frac{{m{c^2}}}{{h{e^2}}}} \right)$
Solution
Let $\mu_{0}$ related with $e, m, c$ and $h$ as follows.
$\mu_{0}=k e^{a} m^{b} c^{c} h^{d}$
${\left[M L T^{-2} A^{-2}\right]=[A T]^{a}[M]^{b}\left[L T^{-1}\right]^{c}\left[M L^{2} T^{-1}\right]^{d}}$
$=\left[M^{b+d} L^{c+2 d} T^{a-c-d} A^{a}\right]$
On comparingboth sides we get
$a=-2 \quad \ldots(i)$
$b+d=1 \ldots(i i)$
$c+2 d=1 \ldots(i i i)$
$a-c-d=-2 \ldots(i v)$
By equations $(i),(i i),(i i i)$ and $(i v)$ we get,
$a=-2, b=0, c=-1, d=1$
$\left[\mu_{0}\right]=\left[\frac{h}{c e^{2}}\right]$