यदि किसी धनपूर्णांक $n$ के लिए, द्विघाती समीकरण
$x(x+1)+(x+1)(x+2)+\ldots+(x+\overline{n-1})(x+n)=10 n$
के दो क्रमिक पूर्णांकीय हल है, तो $n$ बराबर है :
$11$
$12$
$9$
$10$
माना $y = \sqrt {\frac{{(x + 1)(x - 3)}}{{(x - 2)}}} $ तो $y$ के वास्तविक मानों के लिये $x$ है
यदि $\alpha, \beta $ $\gamma$ समीकरण $2{x^3} - 3{x^2} + 6x + 1 = 0$ के मूल हों, तो ${\alpha ^2} + {\beta ^2} + {\gamma ^2}$ का मान है
समीकरण $( x +1)^{2}+| x -5|=\frac{27}{4}$ के वास्तविक मूलों की संख्या है ............ |
समीकरण $\left|x^2-8 x+15\right|-2 x+7=0$ के सभी मूलों का योग है:
यदि $2+3 i$, समीकरण $2 x^{3}-9 x^{2}+ k x-13=0$, $k \in R$ का एक मूल है, तो इस समीकरण का वास्तविक मूल