यदि किसी धनपूर्णांक $n$ के लिए, द्विघाती समीकरण
$x(x+1)+(x+1)(x+2)+\ldots+(x+\overline{n-1})(x+n)=10 n$
के दो क्रमिक पूर्णांकीय हल है, तो $n$ बराबर है :
$11$
$12$
$9$
$10$
माना $a$ के धन पूर्णांक मानों, जिन के लिए $\frac{a x^2+2(a+1) x+9 a+4}{x^2-8 x+32} < 0, \forall x \in \mathbb{R}$ है, का समुच्चय $\mathrm{S}$ है। तो $\mathrm{S}$ में अवयवों की संख्या है।
यदि $|x - 2| + |x - 3| = 7$, तब $x =$
समीकरण $|x{|^2}$-$3|x| + 2 = 0$ के वास्तविक हलों की संख्या है
समीकरण $3\left(x^2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)+5=0$ की संख्या है:
यदि समीकरण ${x^3} - 3x + 2 = 0$ के दो मूल बराबर हों तो मूल होंगे