यदि सम्मिश्र संख्याओं ${z_1}$ तथा  ${z_2}$ के लिये $arg({z_1}/{z_2}) = 0,$तब $|{z_1} - {z_2}|$ =

  • A

    $|{z_1}| + |{z_2}|$

  • B

    $|{z_1}| - |{z_2}|$

  • C

    $||{z_1}| - |{z_2}||$

  • D

    $0$

Similar Questions

यदि $z = x + iy$ समीकरणों $| z |-2=0$ तथा $|z-i||z+5 i|=0$ को संतुष्ट करता है, तो

  • [JEE MAIN 2022]

माना $z,w$ सम्मिश्र संख्यायें हैं जबकि $\overline z  + i\overline w  = 0$ और $arg\,\,zw = \pi $, तब $arg\  z$ बराबर है  

  • [AIEEE 2004]

यदि दो सम्मिश्र संख्याओं के मापांक इकाई से कम हैं, तो इन सम्मिश्र संख्याओं के योग का मापांक होगा

माना $w(\operatorname{Im} w \neq 0)$ एक सम्मिश्र संख्या है, तो सभी सम्मिश्र संख्याओं $z$ का समुच्चय, जो किसी वास्तविक संख्या $k$ के लिए, समीकरण $w -\overline{ w } z = k (1-z)$ को संतुष्ट करता है

  • [JEE MAIN 2014]

$|z|$ का उच्चिष्ठ मान, जहाँ $\left| {z + \frac{2}{z}} \right| = 2$है, होगा