If in greatest integer function, the domain is a set of real numbers, then range will be set of
Real numbers
Rational numbers
Imaginary numbers
Integers
Let $R$ be the set of all real numbers and let $f$ be a function from $R$ to $R$ such that $f(x)+\left(x+\frac{1}{2}\right) f(1-x)=1$, for all $x \in R$. Then $2 f(0)+3 f(1)$ is equal to
If $a+\alpha=1, b+\beta=2$ and $\operatorname{af}(x)+\alpha f\left(\frac{1}{x}\right)=b x+\frac{\beta}{x}, x \neq 0,$ then the value of expression $\frac{ f ( x )+ f \left(\frac{1}{ x }\right)}{ x +\frac{1}{ x }}$ is ..... .
If $x \in [0, 1]$, then the number of solution $(s)$ of the equation $2[cos^{-1}x] + 6[sgn(sinx)] = 3$ is (where $[.]$ denotes greatest integer function and sgn $(x)$ denotes signum function of $x$)-
Which pair $(s)$ of function $(s)$ is/are equal ?
where $\{x\}$ and $[x]$ denotes the fractional part $\&$ integral part functions.
If $f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = 3x,x \ne 0$ and $S = \left\{ {x \in R:f\left( x \right) = f\left( { - x} \right)} \right\}$;then $S :$