यदि $( x +1)^{ n }$ के $x$ की घातों में द्विपद प्रसार में कोई तीन क्रमागत गुणांक $2: 15: 70$ के अनुपात में है, तो इन तीन गुणांकों का औसत हैं
$964$
$625$
$227$
$232$
$\left(x-\frac{3}{x^{2}}\right)^{m}, x \neq 0,$ जहाँ $m$ एक प्राकृत संख्या है, के प्रसार में पहले तीन पदों के गुणांकों का योग $559$ है। प्रसार में $x^{3}$ वाला पद ज्ञात कीजिए।
यदि $\left(a x-\frac{1}{b x^2}\right)^{13}$ में $x^7$ का गुणांक तथा $\left(a x+\frac{1}{b x^2}\right)^{13}$ में $x^{-5}$ का गुणांक बराबर हैं, तो $a^4 b^4$ बराबर है :
यदि $n$, बहुपद ${\left[ {\frac{1}{{\sqrt {5{x^3} + 1} - \sqrt {5{x^3} - 1} }}} \right]^8} $$+ {\left[ {\frac{1}{{\sqrt {5{x^3} + 1} + \sqrt {5{x^3} - 1} }}} \right]^8}$ की घात है, तथा $m$ इसमें स्थित $x ^{ n }$ का गुणांक है, तो क्रमित युग्म $( n , m )$ बराबर है $:$
गुणन $\left(2-x^{2}\right) \cdot\left(\left(1+2 x+3 x^{2}\right)^{6}+\left(1-4 x^{2}\right)^{6}\right)$ के प्रसार में $x^{2}$ का गुणांक है
${\left( {x + \frac{2}{{{x^2}}}} \right)^{15}}$ के प्रसार में $x$ से स्वतंत्र पद है