यदि ${\left( {x - \frac{1}{{2x}}} \right)^n}$ के विस्तार में तीसरे तथा चौथे पदों के गुणांकों का अनुपात  $1 : 2$  हो, तो $n$ का मान होगा  

  • A

    $18$

  • B

    $16$

  • C

    $12$

  • D

    $-10$

Similar Questions

$\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{6}$ के प्रसार में $x$ से स्वतंत्र पद ज्ञात कीजिए।

${\left( {x - \frac{3}{{{x^2}}}} \right)^9}$ के विस्तार में $x$ से स्वतंत्र पद होगा

${\left( {x - \frac{1}{x}} \right)^6}$ के विस्तार में $x$ से स्वतंत्र पद है

$\left(1-\frac{1}{x}+3 x^{5}\right)\left(2 x^{2}-\frac{1}{x}\right)^{8}$ के द्विपद प्रसार में $x$ से स्वतंत्र पद है

  • [JEE MAIN 2015]

यदि द्विपद ${\left[ {\sqrt {{2^{\log (10 - {3^x})}}} + \sqrt[5]{{{2^{(x - 2)\log 3}}}}} \right]^m}$ के प्रसार में $6$ वां पद $21$ के बराबर है तथा यह ज्ञात है कि प्रसार में दूसरे, तीसरे तथा चौथे पदों के द्विपद गुणांक क्रमश: समान्तर श्रेणी के प्रथम, तृतीय तथा पंचम पद हैं. (संकेत $log$ आधार $10$ के सापेक्ष लघुगणक के लिये प्रयुक्त है), तब $x = $