${(1 + x)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ के प्रसार में $x$ से स्वतंत्र पद है
$C_0^2 + 2C_1^2 + .... + (n + 1)C_n^2$
${({C_0} + {C_1} + .... + {C_n})^2}$
$C_0^2 + C_1^2 + ..... + C_n^2$
इनमें से कोई नहीं
यदि $\left(t^2 x^{\frac{1}{5}}+\frac{(1-x)^{\frac{1}{10}}}{t}\right)^{15}, x \geq 0$, के प्रसार में $t$, से स्वतंत्र पद का अधिकतम मान $K$ है, तो $8 K$ बराबर है $...........$
निम्नलिखित के प्रसार में व्यापक पद लिखिए
$\left(x^{2}-y x\right)^{12}, x \neq 0$
$(x+a)^{n}$ के प्रसार में अंत से $r^{\text {th }}$ पद ज्ञात कीजिए।
$\left(1+\frac{x}{2}-\frac{2}{x}\right)^{4} x \neq 0$ का द्विपद प्रमेय द्वारा प्रसार ज्ञात कीजिए
$\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}$ का मान ज्ञात कीजिए।