- Home
- Standard 11
- Mathematics
8. Sequences and Series
medium
સમગુણોત્તર શ્રેણીનાં $p,q,r$ માં પદો અનુક્રમે $a, b, c$ હોય તો સાબિત કરો કે,
$a^{q-r} b^{r-p} c^{p-q}=1$
Option A
Option B
Option C
Option D
Solution
Let $A$ be the first term and $R$ be the common ratio of the $G.P.$
According to the given information,
$A R^{p-1}=a$
$A R^{q-1}=b$
$A R^{r-1}=c$
$a^{q-r} \cdot b^{r-p} \cdot c^{p-q}$
$=A^{q-r} \times R^{(p-1)(q-r)} \times A^{r-p} \times R^{(q-1)(r-p)} \times A^{p-q} \times R^{(r-1)(p-q)}$
$ = {A^{q – r + r – p + p – q}} \times {R^{(pr – pr – q + r) + (rq – r + p – pq) + (pr – p – qr + q)}}$
$=A^{0} \times R^{0}$
$=1$
Thus, the given result is proved.
Standard 11
Mathematics