સમગુણોત્તર શ્રેણીનાં $p,q,r$ માં પદો અનુક્રમે $a, b, c$ હોય તો સાબિત કરો કે,
$a^{q-r} b^{r-p} c^{p-q}=1$
Let $A$ be the first term and $R$ be the common ratio of the $G.P.$
According to the given information,
$A R^{p-1}=a$
$A R^{q-1}=b$
$A R^{r-1}=c$
$a^{q-r} \cdot b^{r-p} \cdot c^{p-q}$
$=A^{q-r} \times R^{(p-1)(q-r)} \times A^{r-p} \times R^{(q-1)(r-p)} \times A^{p-q} \times R^{(r-1)(p-q)}$
$ = {A^{q - r + r - p + p - q}} \times {R^{(pr - pr - q + r) + (rq - r + p - pq) + (pr - p - qr + q)}}$
$=A^{0} \times R^{0}$
$=1$
Thus, the given result is proved.
જો $2^{10}+2^{9} \cdot 3^{1}+28 \cdot 3^{2}+\ldots+2 \cdot 3^{9}+3^{10}=S -211$ હોય તો $S$ ની કિમત શોધો
એક સમગુણોત્તર શ્રેણીનું ત્રીજું પદ $24$ અને છઠું પદ $192$ છે તો તેનું $10$ મું પદ શોધો.
જેનાં પ્રથમ બે પદોનો સરવાળો $-4$ હોય અને પાંચમું પદ ત્રીજા પદથી ચાર ગણુ હોય એવી સમગુણોત્તર શ્રેણી શોધો.
એક સમગુણોત્તર શ્રેણીના $p$ માં, $q$ માં અને $r$ માં પદ અનુક્રમે $a, b, c$ હોય, તો $a^{q-r} . b^{r - p }. c^{p-q} = …….$
જો અનંત સમગુણોતર શ્રેણીનું પ્રથમ પદ $a$ અને સામાન્ય ગુણોતર $r$ હોય અને શ્રેણીનો સરવાળો $4$ હોય અને બીજું પદ $3/4$ હોય,તો