यदि किसी समान्तर अनुक्रम के $p$ वें, $q$ वें व $r$ वें पद क्रमश: $a , b,$ $c$ हों, तो $[a(q - r)$ + $b(r - p)$ $ + c(p - q)]$ का मान होगा
$1$
$- 1$
$0$
$1/2$
अनुक्रम में प्रत्येक के प्रथम पाँच पद लिखिये, जिनका $n$ वाँ पद दिया गया है
$a_{n}=\frac{n}{n+1}$
तीन घनात्मक पूर्णाकों $\mathrm{p}, \mathrm{q}, \mathrm{r}$, के लिए $\mathrm{x}^{\mathrm{pq}}=\mathrm{y}^{\mathrm{qr}}=\mathrm{z}^{\mathrm{p}^2 \mathrm{r}}, \mathrm{r}=\mathrm{pq}+1$ हैं तथा $3,3 \log _{\mathrm{y}} \mathrm{x}$, $3 \log _z y, 7 \log _x z$ एक $A.P.$ में है, जिसका सार्व अंतर $\frac{1}{2}$ है। तो $\mathrm{r}-\mathrm{p}-\mathrm{q}$ बराबर है
माना $a _{1}, a _{2}, \ldots, a _{ n }$ एक दी गई समांतर श्रेढ़ी है, जिसका सार्वअंतर एक पूर्णाक है तथा $S _{ n }= a _{1}+ a _{2}+\ldots+ a _{ n }$ है। यदि $a _{1}=1, a _{ n }=300$ तथा $15 \leq n \leq 50$, हैं, तो क्रमित युग्म $\left( S _{ n -4,{ }^{ n -4}}\right)$ बराबर है
अनुक्रम में प्रत्येक के प्रथम पाँच पद लिखिये, जिनका $n$ वाँ पद दिया गया है
$a_{n}=2^{n}$
दी गई परिभाषाओं के आधार पर निम्नलिखित प्रत्येक अनुक्रम के प्रथम तीन पद बताइए
$a_{n}=2 n+5$