यदि किसी समान्तर अनुक्रम के $p$ वें, $q$ वें व $r$ वें पद क्रमश: $a , b,$ $c$ हों, तो  $[a(q - r)$ + $b(r - p)$ $ + c(p - q)]$ का मान होगा

  • A

    $1$

  • B

    $- 1$

  • C

    $0$

  • D

    $1/2$

Similar Questions

माना कि $X$ समान्तर श्रेणी (arithmetic progression) $1, 6, 11, ...$ के प्रथम $2018$ पदों का समुच्चय (set) है, और $Y$ समान्तर श्रेणी $9,16,23, \ldots$ के प्रथम $2018$ पदों का समुच्चय है। तब समुच्चय $X \cup Y$ में अवयवों (elements) की संख्या है................|

  • [IIT 2018]

एक समान्तर श्रेणी के प्रथम चार पदों का योग $56$ है। अन्तिम चार पदों का योग $112$ है। यदि इसका प्रथम पद $11$ हो, तो पदों की संख्या है

यदि ${a_1},\;{a_2},\;{a_3}.......{a_n}$ स.श्रे. में हों,(जहाँ $i$ के सभी मानों के लिये ${a_i} > 0$),  तब $\frac{1}{{\sqrt {{a_1}}  + \sqrt {{a_2}} }} + \frac{1}{{\sqrt {{a_2}}  + \sqrt {{a_3}} }} + $$........ + \frac{1}{{\sqrt {{a_{n - 1}}}  + \sqrt {{a_n}} }}$ का मान होगा

  • [IIT 1982]

मान लें कि $a_n$, एक अंकगणितीय श्रेढ़ी $(arithmetic\,progression)$ है, जहाँ $n \geq 1$ है और इस श्रेढ़ी का पहला पद $2$ और सार्व अंतर $(common\,difference)$ $4$ है। मान लें कि $M_n$ पहले $n$ पदों का औसत है, तब योग $\sum \limits_{n=1}^{10} M_n$ क्या होगा ?

  • [KVPY 2019]

किसी समान्तर श्रेणी का $n$ वाँ पद $3n - 1$ है, तो इसके प्रथम पाँच पदों का योगफल होगा