यदि $4$ पदों वाली एक समान्तर श्रेणी के प्रथम व अन्तिम पदों का योग $8$ एवं शेष दो बीच वाली संख्याओं का गुणनफल $15$ हो, तो श्रेणी की सबसे बड़ी संख्या होगी
$5$
$7$
$9$
$11$
माना एक समांतर श्रेढ़ी के प्रथम $2 n$ पदों का योगफल $S _{1}$ है। माना उसी समांतर श्रेढ़ी के प्रथम $4 n$ पदों का योगफल $S_{2}$ है। यदि $\left(S_{2}-S_{1}\right)=1000$ है, तो इस समांतर श्रेढ़ी के प्रथम $6 n$ पदों का योग बराबर है
यदि $a,\;b,\;c$ समान्तर श्रेणी में हों, तो $\frac{{{{(a - c)}^2}}}{{({b^2} - ac)}}$ =
यदि एक समान्तर श्रेढ़ी के प्रथम तीन पदों का योगफल तथा गुणनफल क्रमशः $33$ तथा $1155$ है, तो इसके $11$ वें पद का एक मान है
संख्याओं के दो समूह $a,\;2b$ व $2a,\;b$, (जहाँ $a,\;b \in R$) के बीच $n$ समान्तर माध्य स्थापित किये गये हैं। यदि इन संख्याओं के दोनों समूहों के लिये $m$ वाँ समान्तर माध्य बराबर हो, तो $a:b$ है
यदि किसी समांतर श्रेणी के प्रथम $p, q, r$ पदों का योगफल क्रमशः $a, b$ तथा $c$ हो तो सिद्ध कीजिए कि
$\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$