यदि $4$ पदों वाली एक समान्तर श्रेणी के प्रथम व अन्तिम पदों का योग $8$ एवं शेष दो बीच वाली संख्याओं का गुणनफल $15$ हो, तो श्रेणी की सबसे बड़ी संख्या होगी
$5$
$7$
$9$
$11$
माना कि $AP ( a ; d )$ एक अनंत समान्तर श्रेणी (infinite arithmetic progression) के पदों का समुच्चय (set) है जिसका प्रथम पद $a$ तथा सर्वान्तर (common difference) $d >0$ है। यदि $AP (1 ; 3) \cap \operatorname{AP}(2 ; 5) \cap AP (3 ; 7)=$ $AP ( a ; d )$ है, तब $a + d$ बराबर . . . . .
यदि किसी समांतर श्रेणी के $n$ पदों का योगफल $\left(p n+q n^{2}\right)$, है, जहाँ $p$ तथा $q$ अचर हों तो सार्व अंतर ज्ञात कीजिए।
श्रेणियों $ S_1=3+7+11+15+19+\ldots \ldots $ $ S_2=1+6+11+16+21+\ldots $ का $8$ वाँ उभयनिष्ठ पद है।
यदि किसी समांतर श्रेणी की तीन संख्याओं का योग $24$ है तथा उनका गुणनफल $440$ है, तो संख्याएँ ज्ञात कीजिए।
$a$ व $b$ के बीच में $n$ समान्तर माध्यों का योग है