यदि किसी समांतर श्रेणी के $n$ पदों का योगफल $\left(p n+q n^{2}\right)$, है, जहाँ $p$ तथा $q$ अचर हों तो सार्व अंतर ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is known that: $S_{n}=\frac{n}{2}[2 a+(n-1) d]$

According to the given condition,

$\frac{n}{2}[2 a+(n-1) d]=p n+q n^{2}$

$\Rightarrow \frac{n}{2}[2 a+n d-d]=p n+q n^{2}$

$\Rightarrow n a+n^{2} \frac{d}{2}-n \cdot \frac{d}{2}=p n+q n^{2}$

Comparing the coefficients of $n^{2}$ on both sides, we obtain

$\frac{d}{2}=q$

$\therefore d=2 q$

Thus, the common difference of the $A.P.$ is $2 q$

Similar Questions

श्रेणी $\sqrt 2  + \sqrt 8  + \sqrt {18}  + \sqrt {32}  + .........$ के  $24$ पदों का योगफल है

यदि $n$ विषम या सम हो,तो श्रेणी $1 - 2 + 3 - 4 + 5 - 6 + ......$ के $n$ पदों का योग होगा

दो समान्तर श्रेणियों के $n$ पदों के योग का अनुपात $(7n + 1):(4n + 27)$ है, तो इनके $11$ वें पदों का अनुपात होगा

यदि $a_m$ समान्तर श्रेणी के $m$ वें पद को प्रदर्शित करता हो, तब $a_m$ का मान होगा   

एक निर्माता घोषित करता है कि उसकी मशीन जिसका मूल्य $15625$ रुपये है, हर वर्ष $20 \%$ की दर से उसका अवमूल्यन होता है। $5$ वर्ष बाद मशीन का अनुमानित मूल्य ज्ञात कीजिए।