- Home
- Standard 11
- Mathematics
8. Sequences and Series
medium
यदि किसी समांतर श्रेणी के $n$ पदों का योगफल $\left(p n+q n^{2}\right)$, है, जहाँ $p$ तथा $q$ अचर हों तो सार्व अंतर ज्ञात कीजिए।
A
$2 q$
B
$2 q$
C
$2 q$
D
$2 q$
Solution
It is known that: $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
According to the given condition,
$\frac{n}{2}[2 a+(n-1) d]=p n+q n^{2}$
$\Rightarrow \frac{n}{2}[2 a+n d-d]=p n+q n^{2}$
$\Rightarrow n a+n^{2} \frac{d}{2}-n \cdot \frac{d}{2}=p n+q n^{2}$
Comparing the coefficients of $n^{2}$ on both sides, we obtain
$\frac{d}{2}=q$
$\therefore d=2 q$
Thus, the common difference of the $A.P.$ is $2 q$
Standard 11
Mathematics