यदि किसी वृत्त का केन्द्र $(-6, 8)$ है एवं यह बिन्दु $(0, 0)$ से गुजरता है, तो $(0, 0)$ पर इसकी स्पर्श रेखा का समीकरण है
$2y = x$
$4y = 3x$
$3y = 4x$
$3x + 4y = 0$
यदि रेखा $lx + my = 1$, वृत्त ${x^2} + {y^2} = {a^2}$ की एक स्पर्श रेखा हो तो बिन्दु $(l, m)$ का बिन्दुपथ है
रेखा $x\cos \alpha + y\sin \alpha = p$, वृत्त ${x^2} + {y^2} - 2ax\cos \alpha - 2ay\sin \alpha = 0$ की स्पर्श रेखा होगी, यदि $p = $
बिन्दु $(\alpha ,\beta )$ से वृत्त $a{x^2} + a{y^2} = {r^2}$ पर खींची गयी स्पर्श रेखा की लम्बाई का वर्ग है
यदि वृत्त $S \equiv {x^2} + {y^2} + 2gx + 2fy + c = 0$ द्वारा बिन्दु $P({x_1},{y_1})$ पर अन्तरित कोण $\theta $ हो, तो
सरल रेखा $x\cos \alpha + y\sin \alpha = p$, वृत्त ${x^2} + {y^2} = {a^2}$ को स्पर्श करती है, यदि