- Home
- Standard 11
- Mathematics
7.Binomial Theorem
hard
જો $\left(\alpha x^3+\frac{1}{\beta x}\right)^{11}$ માં $x^9$ નો સહગુણક અને $\left(\alpha x-\frac{1}{\beta x^3}\right)^{11}$ માં $x^{-9}$ નો સહગુણક સરખા હોય,તો $(\alpha \beta)^2=........$
A
$2$
B
$4$
C
$1$
D
$6$
(JEE MAIN-2023)
Solution
Coefficient of $x ^9$ in $\left(\alpha x^3+\frac{1}{\beta x}\right)={ }^{11} C_6 \cdot \frac{\alpha^5}{\beta^6}$
$\because$ Both are equal
$\therefore \frac{11}{C_6} \cdot \frac{\alpha^5}{\beta^6}=-\frac{11}{C_5} \cdot \frac{\alpha^6}{\beta^5}$
$\Rightarrow \frac{1}{\beta}=-\alpha$
$\Rightarrow \alpha \beta=-1$
$\Rightarrow(\alpha \beta)^2=1$
Standard 11
Mathematics