7.Binomial Theorem
hard

यदि $\left(\alpha x^3+\frac{1}{\beta x}\right)^{11}$ के प्रसार में $x^9$ का गुणांक एवं $\left(\alpha \mathrm{x}-\frac{1}{\beta \mathrm{x}^3}\right)^{11}$ के प्रसार में $\mathrm{x}^{-9}$ का गुणांक बराबर हैं तब $(\alpha \beta)^2$ बराबर है____________. 

A

$2$

B

$4$

C

$1$

D

$6$

(JEE MAIN-2023)

Solution

Coefficient of $x ^9$ in $\left(\alpha x^3+\frac{1}{\beta x}\right)={ }^{11} C_6 \cdot \frac{\alpha^5}{\beta^6}$

$\because$ Both are equal

$\therefore \frac{11}{C_6} \cdot \frac{\alpha^5}{\beta^6}=-\frac{11}{C_5} \cdot \frac{\alpha^6}{\beta^5}$

$\Rightarrow \frac{1}{\beta}=-\alpha$

$\Rightarrow \alpha \beta=-1$

$\Rightarrow(\alpha \beta)^2=1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.