यदि $\left(1+a x+b x^{2}\right)(1-2 x)^{18}$ के $x$ की घातों में प्रसार में $x^{3}$ तथा $x^{4}$, दोनों के गुणांक शून्य हैं, तो $(a, b)$ बराबर है :
($14$,$\frac{{272}}{3}$)
($16$,$\frac{{272}}{3}$)
($16$,$\frac{{251}}{3}$)
($14$,$\frac{{251}}{3}$)
वह न्यूनतम प्राकृत संख्या $n$, जिसके लिए $\left( x ^{2}+\frac{1}{ x ^{3}}\right)^{ n }$ के प्रसार में $x$ का गुणांक ${ }^{ n } C _{23}$ है
$(x+2 y)^{9}$ के प्रसार में $x^{6} y^{3}$ का गुणांक ज्ञात कीजिए।
${(x + 3)^6}$ के विस्तार में ${x^5}$ का गुणांक होगा
यदि ${(x + y)^n}$ के विस्तार में गुणांकों का योग $1024$ हो, तो विस्तार में सबसे बडे़ गुणांक का मान होगा
${(1 + x + {x^3} + {x^4})^{10}}$ के विस्तार में ${x^4}$ का गुणांक होगा