यदि $\left(a x-\frac{1}{b x^2}\right)^{13}$ में $x^7$ का गुणांक तथा $\left(a x+\frac{1}{b x^2}\right)^{13}$ में $x^{-5}$ का गुणांक बराबर हैं, तो $a^4 b^4$ बराबर है :

  • [JEE MAIN 2023]
  • A

    $44$

  • B

    $22$

  • C

    $11$

  • D

    $33$

Similar Questions

यदि द्विपद ${\left[ {\sqrt {{2^{\log (10 - {3^x})}}} + \sqrt[5]{{{2^{(x - 2)\log 3}}}}} \right]^m}$ के प्रसार में $6$ वां पद $21$ के बराबर है तथा यह ज्ञात है कि प्रसार में दूसरे, तीसरे तथा चौथे पदों के द्विपद गुणांक क्रमश: समान्तर श्रेणी के प्रथम, तृतीय तथा पंचम पद हैं. (संकेत $log$ आधार $10$ के सापेक्ष लघुगणक के लिये प्रयुक्त है), तब $x = $

$(1+x)^{1000}+x(1+x)^{999}+x^{2}(1+x)^{998}+$ $\cdots \cdots+x^{1000}$ के द्विपद प्रसार में $x^{50}$ का गुणाँक है

  • [JEE MAIN 2014]

${\left( {\frac{{{x^2}}}{2} - \frac{2}{x}} \right)^8}$ के प्रसार में ${x^7}$ का गुणांक होगा

$(1-x)^{2008}\left(1+x+x^2\right)^{2007}$ के प्रसार में $x^{2012}$ का गुणांक बराबर है ..............|

  • [JEE MAIN 2024]

यदि धन पूर्णाकों $m$ तथा $n$ के लिए

$(1-y)^{m}(1+y)^{n}=1+a_{1} y+a_{2} y^{2}+\ldots .+a_{m-n} y^{m+n}$ तथा $a_{1}=a_{2}=10$ हैं, तो $(m+n)$ बराबर है

  • [JEE MAIN 2021]